On Polyomino Ideals

Sara Saeedi Madani (Joint with: Jürgen Herzog)

Universität Osnabriick

August 2016

Let
$$\mathbb{R}^2_+ = \{(x,y) \in \mathbb{R}^2 : x,y \ge 0\}.$$

We consider (\mathbb{R}^2_+, \leq) as a partially ordered set with $(x, y) \leq (z, w)$ if $x \leq z$ and $y \leq w$.

Let $a, b \in \mathbb{N}^2$. Then the set $[a, b] = \{c \in \mathbb{N}^2 : a \le c \le b\}$ is called an interval.

Let $a = (i,j), b = (k,l) \in \mathbb{N}^2$ with i < k and j < l. Then the elements a and b are called diagonal corners, and the elements c = (i,l) and d = (k,j) are called anti-diagonal corners of [a,b].

A cell C is an interval of the form [a,b], where b=a+(1,1). The elements of C are called vertices of C. We denote the set of vertices of C by V(C). The intervals [a,a+(1,0)], [a+(1,0),a+(1,1)], [a+(0,1),a+(1,1)] and [a,a+(0,1)] are called edges of C.

Let $a = (i, j), b = (k, l) \in \mathbb{N}^2$ with i < k and j < l. Then the elements a and b are called diagonal corners, and the elements c = (i, l) and d = (k, j) are called anti-diagonal corners of [a, b].

A cell C is an interval of the form [a,b], where b=a+(1,1). The elements of C are called vertices of C. We denote the set of vertices of C by V(C). The intervals [a,a+(1,0)], [a+(1,0),a+(1,1)], [a+(0,1),a+(1,1)] and [a,a+(0,1)] are called edges of C.

Let \mathcal{P} be a finite collection of cells of \mathbb{N}^2 . Then two cells C and D are called connected if there exists a sequence

$$C: C = C_1, C_2, \ldots, C_t = D$$

of cells of \mathcal{P} such that for all $i=1,\ldots,t-1$ the cells C_i and C_{i+1} intersect in an edge.

If the cells in C are pairwise distinct, then C is called a path between C and D.

A finite collection of cells \mathcal{P} is called a polyomino if every two cells of \mathcal{P} are connected.

The vertex set of \mathcal{P} , denoted $V(\mathcal{P})$, is defined to be $\bigcup_{C \in \mathcal{P}} V(C)$.

A finite collection of cells \mathcal{P} is called a polyomino if every two cells of \mathcal{P} are connected.

The vertex set of \mathcal{P} , denoted $V(\mathcal{P})$, is defined to be $\bigcup_{C \in \mathcal{P}} V(C)$.

Figure: A polyomino

The name polyomino was invented by Solomon W. Golomb in 1953 and it was popularized by Martin Gardner.

Figure: A polyomino

The name polyomino was invented by Solomon W. Golomb in 1953 and it was popularized by Martin Gardner.

An inner interval I of a polyomino \mathcal{P} is an interval with the property that all cells inside I belong to \mathcal{P} .

Let \mathcal{P} be a polyomino and $S=K[x_a:a\in V(\mathcal{P})]$ be the polynomial ring with the indeterminates x_a over the field K. The 2-minor $x_ax_b-x_cx_d\in S$ is called an inner minor of \mathcal{P} if [a,b] is an inner interval of \mathcal{P} with anti-diagonal corners c and d.

An inner interval I of a polyomino \mathcal{P} is an interval with the property that all cells inside I belong to \mathcal{P} .

Let \mathcal{P} be a polyomino and $S=K[x_a:a\in V(\mathcal{P})]$ be the polynomial ring with the indeterminates x_a over the field K. The 2-minor $x_ax_b-x_cx_d\in S$ is called an inner minor of \mathcal{P} if [a,b] is an inner interval of \mathcal{P} with anti-diagonal corners c and d.

Associated to $\mathcal P$ is the binomial ideal $I_{\mathcal P}$ in S, generated by all inner minors of $\mathcal P$. This ideal is called the polyomino ideal of $\mathcal P$, and the K-algebra $K[\mathcal P]=S/I_{\mathcal P}$ is called the coordinate ring of $\mathcal P$.

An inner interval I of a polyomino \mathcal{P} is an interval with the property that all cells inside I belong to \mathcal{P} .

Let $\mathcal P$ be a polyomino and $S=K[x_a:a\in V(\mathcal P)]$ be the polynomial ring with the indeterminates x_a over the field K. The 2-minor $x_ax_b-x_cx_d\in S$ is called an inner minor of $\mathcal P$ if [a,b] is an inner interval of $\mathcal P$ with anti-diagonal corners c and d.

Associated to $\mathcal P$ is the binomial ideal $I_{\mathcal P}$ in S, generated by all inner minors of $\mathcal P$. This ideal is called the polyomino ideal of $\mathcal P$, and the K-algebra $K[\mathcal P]=S/I_{\mathcal P}$ is called the coordinate ring of $\mathcal P$.

- (Qureshi): Studying Gröbner basis for some term orders.
- (Qureshi): Characterization of Gorenstein stack polyominoes.

- (Qureshi): Studying Gröbner basis for some term orders.
- (Qureshi): Characterization of Gorenstein stack polyominoes.
- (Ene, Herzog, Hibi): Characterization of those polyominoes whose ideals have linear relations.

- (Qureshi): Studying Gröbner basis for some term orders.
- (Qureshi): Characterization of Gorenstein stack polyominoes.
- (Ene, Herzog, Hibi): Characterization of those polyominoes whose ideals have linear relations.
- Finding polyominoes whose coordinates ring are domain.

- (Qureshi): Studying Gröbner basis for some term orders.
- (Qureshi): Characterization of Gorenstein stack polyominoes.
- (Ene, Herzog, Hibi): Characterization of those polyominoes whose ideals have linear relations.
- Finding polyominoes whose coordinates ring are domain.

Let $\mathcal P$ be a polyomino and $\mathcal I$ a rectangular polyomino such that $\mathcal P\subset \mathcal I$. Then the polyomino $\mathcal P$ is called simple, if each cell $\mathcal C$ which does not belong to $\mathcal P$ satisfies the following condition (*):

there exists a path $C: C = C_1, C_2, \dots, C_t = D$ with $C_i \notin P$ for all $i = 1, \dots, t$ and such that D is not a cell of \mathcal{I} .

Figure: A polyomino which is not simple

Figure: A simple polyomino

Let \mathcal{P} be a polyomino and let \mathcal{H} be the collection of cells $C \notin \mathcal{P}$ which do not satisfy condition (*). The connected components of \mathcal{H} are called the holes of \mathcal{P} .

Note that P is simple if and only if it is hole-free.

Figure: A polyomino which has a hole

Conjecture (Qureshi, 2012)

Let \mathcal{P} be a simple polyomino. Then $I_{\mathcal{P}}$ is a prime ideal.

Admissible Labeling

For a polyomino \mathcal{P} , a function $\alpha:V(\mathcal{P})\to\mathbb{Z}$ is called an admissible labeling of \mathcal{P} , if for all maximal horizontal and vertical edge intervals I of \mathcal{P} , we have

$$\sum_{a\in I}\alpha(a)=0.$$

Admissible Labeling

Figure: An admissible labeling

Let α be an admissible labeling of a polyomino \mathcal{P} . We may view α as a vector $\alpha \in \mathbb{Z}^n$, where n is the number of vertices of \mathcal{P} . By using this notation, we associate to α the binomial $f_{\alpha} = \mathbf{x}^{\alpha^+} - \mathbf{x}^{\alpha^-}$.

Let $J_{\mathcal{P}}$ be the ideal in S which is generated by the binomials f_{α} , where α is an admissible labeling of \mathcal{P} . By definition, it is clear that $I_{\mathcal{P}} \subset J_{\mathcal{P}}$.

Let α be an admissible labeling of a polyomino \mathcal{P} . We may view α as a vector $\alpha \in \mathbb{Z}^n$, where n is the number of vertices of \mathcal{P} . By using this notation, we associate to α the binomial $f_{\alpha} = \mathbf{x}^{\alpha^+} - \mathbf{x}^{\alpha^-}$.

Let $J_{\mathcal{P}}$ be the ideal in S which is generated by the binomials f_{α} , where α is an admissible labeling of \mathcal{P} . By definition, it is clear that $I_{\mathcal{P}} \subset J_{\mathcal{P}}$.

A polyomino \mathcal{P} is called balanced if $f_{\alpha} \in I_{\mathcal{P}}$ for every admissible labeling α of \mathcal{P} .

Let α be an admissible labeling of a polyomino \mathcal{P} . We may view α as a vector $\alpha \in \mathbb{Z}^n$, where n is the number of vertices of \mathcal{P} . By using this notation, we associate to α the binomial $f_{\alpha} = \mathbf{x}^{\alpha^+} - \mathbf{x}^{\alpha^-}$.

Let $J_{\mathcal{P}}$ be the ideal in S which is generated by the binomials f_{α} , where α is an admissible labeling of \mathcal{P} . By definition, it is clear that $I_{\mathcal{P}} \subset J_{\mathcal{P}}$.

A polyomino \mathcal{P} is called balanced if $f_{\alpha} \in I_{\mathcal{P}}$ for every admissible labeling α of \mathcal{P} .

Theorem (Herzog - Qureshi - Shikama, 2014)

Let \mathcal{P} be a balanced polyomino. Then $K[\mathcal{P}]$ is a normal Cohen-Macaulay domain of dimension $|V(\mathcal{P})| - |\mathcal{P}|$.

(Row or Column) Convex Polyominoes

Figure: A row convex polyomino which is not column convex

Tree-like Polyominoes

Figure: A tree-like polyomino

(Row or Column) Convex and Tree-like Polyominoes

Theorem (Herzog - Qureshi - Shikama, 2014)

Let $\mathcal P$ be a row or column convex, or a tree–like polyomino. Then $\mathcal P$ is balanced and simple.

(Row or Column) Convex and Tree-like Polyominoes

Corollary (Herzog - Qureshi - Shikama, 2014)

Let \mathcal{P} be a row or column convex, or a tree-like polyomino. Then $\mathcal{K}[\mathcal{P}]$ is a normal Cohen–Macaulay domain.

Simple = Balanced

Theorem (Herzog, -, 2015)

A polyomino is simple if and only if it is balanced.

Conjecture is proved!

Corollary (Herzog, -, 2015)

Let $\mathcal P$ be a simple polyomino. Then $\mathcal K[\mathcal P]$ is a Cohen–Macaulay normal domain.

Even more!

Theorem (Qureshi - Shibuta - Shikama, 2015)

Let \mathcal{P} be a simple polyomino. Then $K[\mathcal{P}]$ is a toric edge ring.

What else is prime?

- (Shikama, 2015) Rectangle minus rectangle.
- (Hibi-Qureshi, 2015) Rectangle minus convex.

Furthermore...

- Determining polyominoes $\mathcal P$ with exactly one hole where $I_{\mathcal P}$ is prime.
- Are they all radical?
- Studying the ideal of higher minors.
- Studying some algebraic invariants like regularity.

Thanks for your attention.