On the containment problem

Tomasz Szemberg

National School on Algebra 2016 Moieciu de Sus, August 17 - 24, 2016

Definition

Let \mathbb{K} be a field and let $R = \mathbb{K}[x_0, \dots, x_n]$ be the ring of polynomials. For a homogeneous ideal $0 \neq I \subsetneq R$ its *m-th symbolic power* is

$$I^{(m)} = \bigcap_{P \in \mathrm{Ass}(I)} (I^m R_P \cap R).$$

Definition

Let \mathbb{K} be a field and let $R = \mathbb{K}[x_0, \dots, x_n]$ be the ring of polynomials. For a homogeneous ideal $0 \neq I \subsetneq R$ its *m-th symbolic power* is

$$I^{(m)} = \bigcap_{P \in \mathrm{Ass}(I)} (I^m R_P \cap R).$$

Theorem (Zariski-Nagata)

Let $X \subset \mathbb{P}^n(\mathbb{K})$ be a projective variety (in particular reduced). Then $I(X)^{(m)}$ is generated by all forms which vanish along X to order at least m.

Symbolic powers of ideals of points

Let $Z = \{P_1, \dots, P_s\}$ be a finite set of points in $\mathbb{P}^n(\mathbb{K})$. Then

$$I(Z) = I(P_1) \cap \ldots \cap I(P_s)$$

and

$$I(Z)^{(m)} = I(P_1)^m \cap \ldots \cap I(P_s)^m$$

for all $m \ge 1$.

Problem

Compare ordinary and symbolic powers of homogeneous ideals.

Problem

Compare ordinary and symbolic powers of homogeneous ideals. More precisely, given I determine all pairs (m, r) such that

- a) $I^r \subset I^{(m)}$;
- b) $I^{(m)} \subset I^r$.

Problem

Compare ordinary and symbolic powers of homogeneous ideals. More precisely, given I determine all pairs (m, r) such that a) $I^r \subset I^{(m)}$;

 $b) I^{(m)} \subset I^r$.

Proposition

$$I^r \subset I^{(m)} \Leftrightarrow r \geq m.$$

Problem

Compare ordinary and symbolic powers of homogeneous ideals. More precisely, given I determine all pairs (m, r) such that a) $I^r \subset I^{(m)}$;

b) $I^{(m)} \subset I^r$.

Proposition

$$I^r \subset I^{(m)} \Leftrightarrow r \geq m.$$

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

If
$$m \ge \text{bight}(I)r$$
, then $I^{(m)} \subset I^r$.

Example

If I is the complete intersection, then $I^{(m)} = I^m$ for all $m \ge 1$.

Example

If I is the complete intersection, then $I^{(m)} = I^m$ for all $m \ge 1$.

Theorem (A simplified version)

If
$$m \ge nr$$
, then $I^{(m)} \subset I^r$.

Example

If I is the complete intersection, then $I^{(m)} = I^m$ for all $m \ge 1$.

Theorem (A simplified version)

If
$$m \ge nr$$
, then $I^{(m)} \subset I^r$.

Question

Can one improve the coefficient n in front of r?

Example

If I is the complete intersection, then $I^{(m)} = I^m$ for all $m \ge 1$.

Theorem (A simplified version)

If
$$m \ge nr$$
, then $I^{(m)} \subset I^r$.

Question

Can one improve the coefficient n in front of r?

Answer

No (Bocci, Harbourne).

Problem (Bocci, Harbourne, Huneke)

Does the containment

$$I^{(m)} \subset I^r$$

hold for all r and $m \ge nr - (n-1)$?

Problem (Bocci, Harbourne, Huneke)

Does the containment

$$I^{(m)} \subset I^r$$

hold for all r and $m \ge nr - (n-1)$?

Problem (Baby case, Huneke 2000)

Let I be a saturated ideal of points in $\mathbb{P}^2(\mathbb{K})$. Is there the containment

$$I^{(3)} \subset I^2$$
 ?

Problem (Bocci, Harbourne, Huneke)

Does the containment

$$I^{(m)} \subset I^r$$

hold for all r and $m \ge nr - (n-1)$?

Problem (Baby case, Huneke 2000)

Let I be a saturated ideal of points in $\mathbb{P}^2(\mathbb{K})$. Is there the containment

$$I^{(3)} \subset I^2$$
 ?

Problem (Harbourne, Huneke)

Let $M = \langle x_0, \dots, x_n \rangle$. Does the containment

$$I^{(m)} \subset M^{r(n-1)}I^r$$

hold for m > nr?

Theorem

The containment

$$I^{(nr-(n-1))} \subset I^r$$

holds for

a) arbitrary ideals in characteristic 2;

Theorem

The containment

$$I^{(nr-(n-1))} \subset I^r$$

holds for

- a) arbitrary ideals in characteristic 2;
- b) monomial ideals in arbitrary characteristic;

Theorem

The containment

$$I^{(nr-(n-1))} \subset I^r$$

holds for

- a) arbitrary ideals in characteristic 2;
- b) monomial ideals in arbitrary characteristic;
- c) ideals of d-stars;

Theorem

The containment

$$I^{(nr-(n-1))} \subset I^r$$

holds for

- a) arbitrary ideals in characteristic 2;
- b) monomial ideals in arbitrary characteristic;
- c) ideals of d-stars;
- d) ideals of general points in \mathbb{P}^2 and \mathbb{P}^3 .

Theorem (Seceleanu)

Let $I \subset R$ be a homogeneous ideal. There is an associated exact sequence

$$0 \to I^r/I^m \to R/I^m \xrightarrow{\pi} R/I^r \to 0.$$

The following conditions are equivalent:

- i) there is the containment $I^{(m)} \subset I^r$,
- ii) the induced map $H_M^0(\pi): H_M^0(R/I^m) \to H_M^0(R/I^r)$ is the zero map.

Theorem (Dumnicki, Sz., Tutaj-Gasińska)

The containment

$$I^{(3)} \subset I^2$$

fails for the ideal I of points

$$\begin{array}{lll} P_1 = (1:0:0), & P_2 = (0:1:0), & P_3 = (0:0:1), \\ P_4 = (1:1:1), & P_5 = (1:\varepsilon:\varepsilon^2), & P_6 = (1:\varepsilon^2:\varepsilon), \\ P_7 = (\varepsilon:1:1), & P_8 = (1:\varepsilon:1), & P_9 = (1:1:\varepsilon), \\ P_{10} = (\varepsilon^2:1:1), & P_{11} = (1:\varepsilon^2:1), & P_{12} = (1:1:\varepsilon^2). \end{array}$$

in $\mathbb{P}^2(\mathbb{C})$.

Theorem (Dumnicki, Sz., Tutaj-Gasińska)

The containment

$$I^{(3)} \subset I^2$$

fails for the ideal I of points

$$\begin{array}{lll} P_1 = (1:0:0), & P_2 = (0:1:0), & P_3 = (0:0:1), \\ P_4 = (1:1:1), & P_5 = (1:\varepsilon:\varepsilon^2), & P_6 = (1:\varepsilon^2:\varepsilon), \\ P_7 = (\varepsilon:1:1), & P_8 = (1:\varepsilon:1), & P_9 = (1:1:\varepsilon), \\ P_{10} = (\varepsilon^2:1:1), & P_{11} = (1:\varepsilon^2:1), & P_{12} = (1:1:\varepsilon^2). \end{array}$$

in $\mathbb{P}^2(\mathbb{C})$.

Remark

These are all intersection points of the dual Hesse configuration of lines.

Theorem

The containment

$$I^{(3)} \subset I^2$$

fails for all intersection points of configurations:

• Fermat (over \mathbb{C}) (DSzTG, Seceleanu);

Theorem

The containment

$$I^{(3)} \subset I^2$$

- Fermat (over C) (DSzTG, Seceleanu);
- Klein (over C) (Seceleanu);

Theorem

The containment

$$I^{(3)} \subset I^2$$

- Fermat (over C) (DSzTG, Seceleanu);
- Klein (over C) (Seceleanu);
- Wiman (over C) (Macaulay, Singular);

Theorem

The containment

$$I^{(3)} \subset I^2$$

- Fermat (over C) (DSzTG, Seceleanu);
- Klein (over ℂ) (Seceleanu);
- Wiman (over ℂ) (Macaulay, Singular);
- Boröczky on 12 lines (over ℝ) (Cracow group);

Theorem

The containment

$$I^{(3)} \subset I^2$$

- Fermat (over ℂ) (DSzTG, Seceleanu);
- Klein (over ℂ) (Seceleanu);
- Wiman (over C) (Macaulay, Singular);
- Boröczky on 12 lines (over ℝ) (Cracow group);
- Boröczky on more lines (over ℝ) (Macaulay, Singular);

Theorem

The containment

$$I^{(3)} \subset I^2$$

- Fermat (over C) (DSzTG, Seceleanu);
- Klein (over ℂ) (Seceleanu);
- Wiman (over ℂ) (Macaulay, Singular);
- Boröczky on 12 lines (over \mathbb{R}) (Cracow group);
- Boröczky on more lines (over ℝ) (Macaulay, Singular);
- Boröczky-type on 12 lines (over Q) (Lampa-Baczyńska, Szpond);

Theorem

The containment

$$I^{(3)} \subset I^2$$

fails for all intersection points of configurations:

- Fermat (over C) (DSzTG, Seceleanu);
- Klein (over ℂ) (Seceleanu);
- Wiman (over C) (Macaulay, Singular);
- Boröczky on 12 lines (over \mathbb{R}) (Cracow group);
- Boröczky on more lines (over ℝ) (Macaulay, Singular);
- Boröczky-type on 12 lines (over Q) (Lampa-Baczyńska, Szpond);

Remark

No counterexample is known for higher powers, e.g. $I^{(5)} \subset I^3$.

Theorem

The containment

$$I^{(3)} \subset I^2$$

fails for all intersection points of configurations:

- Fermat (over ℂ) (DSzTG, Seceleanu);
- Klein (over ℂ) (Seceleanu);
- Wiman (over C) (Macaulay, Singular);
- Boröczky on 12 lines (over ℝ) (Cracow group);
- Boröczky on more lines (over ℝ) (Macaulay, Singular);
- Boröczky-type on 12 lines (over Q) (Lampa-Baczyńska, Szpond);

Remark

No counterexample is known for higher powers, e.g. $I^{(5)} \subset I^3$. No counterexamples in \mathbb{P}^n for $n \geq 3$

Boröczky configuration of 12 lines

Menagerie of counterexamples in finite characteristic, Harbourne and Seceleanu

Example

Let \mathbb{K} be a field of odd characteristic p and let \mathbb{L} be its subfield of order p. Let $N=\frac{p+1}{2}$ and let Z be the set of all but one \mathbb{L} -points in $\mathbb{P}^N(\mathbb{K})$. Then for the ideal I=I(Z) there is

$$I^{\left(\frac{p+3}{2}\right)} \nsubseteq I^2$$
.

Menagerie of counterexamples in finite characteristic, Harbourne and Seceleanu

Example

Let \mathbb{K} be a field of odd characteristic p and let \mathbb{L} be its subfield of order p. Let $N=\frac{p+1}{2}$ and let Z be the set of all but one \mathbb{L} -points in $\mathbb{P}^N(\mathbb{K})$. Then for the ideal I=I(Z) there is

$$I^{(\frac{p+3}{2})} \nsubseteq I^2$$
.

Example

Let the numbers p and N be so that $p \equiv 1 \pmod{N}$ and $p > (N-1)^2$. Let Z be the set of all but one \mathbb{L} -points in $\mathbb{P}^N(\mathbb{K})$. Then for $r = \frac{p-1}{N} + 1$ there is

$$I^{(p)} \nsubseteq I^r$$
.

Modified Conjectures

There are modifications of the original problems in the papers by

• Bocci, Cooper and Harbourne: Containment results for ideals of various configurations of points in \mathbb{P}^n ;

Modified Conjectures

There are modifications of the original problems in the papers by

- Bocci, Cooper and Harbourne: Containment results for ideals of various configurations of points in \mathbb{P}^n ;
- Cooper, Embree, Ha and Hoefel: Symbolic powers of monomial ideals.

Relations to external problems: Chudnovsky Conjecture

Definition

For a graded ideal I its *initial degree* $\alpha(I)$ is the least number t such that $I_t \neq 0$.

The Waldschmidt constant of I is the real number

$$\widehat{\alpha}(I) = \inf_{m \geq 1} \frac{\alpha(I^{(m)})}{m}.$$

Relations to external problems: Chudnovsky Conjecture

Definition

For a graded ideal I its *initial degree* $\alpha(I)$ is the least number t such that $I_t \neq 0$.

The Waldschmidt constant of I is the real number

$$\widehat{\alpha}(I) = \inf_{m \geq 1} \frac{\alpha(I^{(m)})}{m}.$$

Conjecture (Chudnovsky)

Let I be a saturated ideal of points in $\mathbb{P}(\mathbb{K})$. Then

$$\widehat{\alpha}(I) \geq \frac{\alpha(I) + n - 1}{n}.$$

Relations to external problems: Nagata Conjecture

Definition

For a graded ideal I its *initial degree* $\alpha(I)$ is the least number t such that $I_t \neq 0$.

Relations to external problems: Nagata Conjecture

Definition

For a graded ideal I its *initial degree* $\alpha(I)$ is the least number t such that $I_t \neq 0$.

Conjecture (Nagata)

Let I be a saturated ideal of $s \geq 10$ very general points in $\mathbb{P}(\mathbb{C})$. Then

$$\alpha(I^{(m)}) > m\sqrt{s}$$
.

Relations to external problems: Bounded Negativity Conjecture

Conjecture (Bounded Negativity Conjecture)

Let S be a smooth complex surface. Then there is a number b such that

$$C^2 \geq b$$

for any reduced curve $C \subset S$.

Relations to external problems: Bounded Negativity Conjecture

Conjecture (Bounded Negativity Conjecture)

Let S be a smooth complex surface. Then there is a number b such that

$$C^2 \geq b$$

for any reduced curve $C \subset S$.

Remark

This conjecture is not known even on blow ups of $\mathbb{P}^2(\mathbb{C})$ at $s \geq 10$ points.

Relations to external problems: Bounded Negativity Conjecture

Conjecture (Bounded Negativity Conjecture)

Let S be a smooth complex surface. Then there is a number b such that

$$C^2 \geq b$$

for any reduced curve $C \subset S$.

Remark

This conjecture is not known even on blow ups of $\mathbb{P}^2(\mathbb{C})$ at $s \geq 10$ points.

Remark

Negativity on blow ups of $\mathbb{P}^2(\mathbb{C})$ gets worst (in terms of Harbourne constants) for intersection points of configurations of lines with no simple intersection points.

