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Toric ideals

Let A= {a1,...,an} C Z™ be a vector configuration in Q™ and

NA:= {ha; +--- + han | € No} the corresponding affine semigroup.
Let A= [a)...ap) € Z™" be an integer matrix with columns a;. For a
vector u € Kerz(A) we let ut, u~ be the unique vectors in N” with
disjoint support such that u = u™ —u~.

Definition

The toric ideal /4 of Ais the ideal in K[xy, - -- , x,] generated by all
binomials of the form x"" — x~ where u € Kerz(A).

A toric ideal is a binomial ideal.
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Toric ideals

Let
21 2 1 0 0
A= 1 2 0 0 2 1 .
0O 01 2 1 2
5
—4
Then 53 belongs to the Kerz(A) since
1
1
5
212100 :g 0
A= 1 2 0 0 2 1 0 = 0 .
0O 0 1 2 1 2 1 0
1
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Toric ideals

5 5 0
—4 0 4
- . 0 _ 3
For the vector u = o | Wwe have u™ = 0 and u~ = 0
1 1 0
1 1 0
Therefore the binomial X" — x* = xPx5x5 — X¢x3 € Ia.
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Toric ideals

Let A= {ay,...,an} C Z™ be a vector configuration in Q.

Let K be any field. We grade the polynomial ring K[x1, ..., Xm] by
setting deg,(x;) = a; for i = 1,..., m. The A-degree of the monomial
x" = x{* - x;" is defined to be

deg,(x") := thay + - - + Umam € NA,

where u = (u1,...,Un) € N™.

Definition

The toric ideal |4 associated to A is the ideal generated by all the
binomials x" — x¥ such that deg,(x") = deg,(x").

For such binomials, we define deg,(x" — x¥) := deg,(x").
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Toric ideals

The A-degree of the binomial x; X5 — X2X4 is

2 0 1 1
dega(xixs) = 1 |+ 1 | =] 2 |+ | 0 | =degs(xaxs)
0 2 0 2

14 is minimally generated by:

{X1X6 — XoX4, X1 X6 — X3X5, X3 X5 — X3X3, Xa X3 — XXy, X1 X2 — X3 Xo,
X1X3 — X3 X6, X3X3 — X2 X5, X1 X4 X5 — XoX3Xg, X4 X2 — XoXZ }.

The A-degrees of the binomials are accordingly

2\ /2\ /4\ [1\ /4

ol 2 ), a4, [1],

2/ \2/) \1) \4/) \ 4
2\ /2\ /5\ /3
5.0 2. 21.] 3
2/ \s/) \2/ \3
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Toric varieties

Toric ideals are the defining ideals of toric varieties.
V(la) ={P e K"|f(P)=0forevery fcla}
It is the Zariski closure of the set of points
(tal7 t327 . tan)

where t € (K — {0})" and ay, - - - , a, are the columns of the matrix A.

If Ais a row matrix, [my, mo, - - - , my], then the toric variety is a
monomial curve in K™: the set of all points in the form
(tm pm2 ... ) where € K.
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Toric varieties

Let
21 2 1 0 0
A= 1 2 0 0 2 1
0O 01 2 1 2

Then the toric variety V(la) is the Zariski closure of the set of points
(b, bty B, 15, Bty 1)

where t = (t, b, 3) € (K — {0})3.
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A simple graph G consists of a set of vertices V(G) = {v1,...,Vmn}
and a set of edges E(G) = {eu,..., en}, where an edge e € E(G) is
an unordered pair of vertices, {v;, v;}. Let Ag be the vertex-edge
incident matrix of the graph G. This is am m x n matrix with 0/1
entries. The rows are indexed by the vertices and the columns by the
edges. The element in the jj position of the matrix Ag is 1 if the vertex
v; belongs to the edge e;, otherwise is zero.
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Toric ideals of Graphs

The vertex-edge incidence matrix of G.

>

(0}

Il
SO O OO = =
OO OO = O
(ew) (@) (@) (e} % (aw) [}
SO O = OO
OO H MM, OOO
OB MEHOOOO
== O O O OO
= O = O O OC O
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Toric ideals of graphs

With /g we denote the toric ideal /4, in K[ey, ..., &5, Where Ag is the
vertex-edge incidence matrix of G. J

Let a. be the column of Ag which corresponds to the edge e. Then
the dega(e) = ae, which is an m-column that has all the elements
zero except two 1.

But one can associate with an edge e = {vs, v;} € E(G) the element
Vs + V; in the free abelian group Z" with basis the set of vertices of G
and may think that dega(e) = vs + v;.
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Graphs

@ A walk connecting v, € V(G) and v, € V(G) is a finite
sequence of the form

w= ({‘/i17 sz}’ {Vizv Vl's}v ooog {Viq7 qu+1})

with each e; = {v;,v;,,} € E(G).
@ Length of the walk w is called the number g of edges of the walk.
@ An even walk is a walk of even length.
@ An odd walk is a walk of odd length.
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Graphs

Awalk w = ({Vj,, Vi, },{Vip; Vi }, - - - , {Viy» Vi, 1) is called closed if
Vigr1 = Vi

A cycle is a closed walk

({Viw Vl'z}a {Vl'zv \/,'3}, caoy {Vi ) Vi1})
q

with v, # v;, forevery 1 <k <j<gq.

Note that, although the graph G has no multiple edges, the same
edge e may appear more than once in a walk. In this case e is called
multiple edge of the walk w.
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Toric ideals of Graphs

@ (e, ey, €3) is closed odd walk, actualy is a cycle.

@ (e,,6,63,61,6,,63) is aclosed even walk. All of the edges are
double edges of the walk.

@ (e1,e,63,€e4,65, 65, €7, €3, 65, €4) is a closed even walk. The
edges ey, &5 are double edges of the walk.
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Toric ideals of Graphs

Given an even closed walk

W= (ei17ei27 .. ~7ei2q) = ({Vila Vl'z}a {Vf27 Vfg}?' ) {V/qa Vil})

of the graph G we denote by

q q

E+(W) = H €ir_1> E~(w) = H iz
k=1 k=1
and by B,, the binomial
q q
By = H €y — H iy -

k=1 k=1

Note that

q
dega(E" (w)) = dega([ [ €)= (Viy+Vi)+(Viy+Vi) )+ +(Viy_, +V) =
k=1

q
= (Vi +Viy)+ (Vi + Vi, )+ -+ (vg+vi,) = dega(] | en,) = dega(E~(w))
k=1
Therefore B,, belongs to the toric ideal /5.



Toric ideals of graphs

Let G be the following graph with 4 vertices and 4 edges.
3
2 4
1
Then
1 0 0 1
1 1.0 0
Ac=1 0 11 0
0 01 1
For the even closed walk w = (e, €3, €3, €4) we have E™(w) = e; e3,
E~(w) = e;eq and B, = e;e3 — e;€4. In fact the toric ideal
associated with Agis Ig =< €163 — ee4 > .
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Toric ideals of Graphs

For the even closed walk w = (ey, €2, €3, €4, €5, €5) We have that
Et(w) = e ese; and E~(w) = eye,6; therefore

BW = 616365 — €26,464.

Note that degg(e1ese5) = degg(ez€466) = Vi + Vo + V3 + vy + V5 + V.
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Toric ideals of Graphs

For the even closed walk w = (ey, €2, €3, €4, €5, €5, €7, €5, €5, €4) WE
have that E*(w) = e;e3ese7e5 and E— (w) = e;e,e565€4 therefore

B, = e1e3€2e; — ere)6565.

Note that
degg(eieseie;) = degg(e265€5€5) = Vi+Va+2V5+2Vy+2V5+ Vg + Vr.
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Toric ideals of Graphs

Note that different walks may correspond to the same binomial. For
example both walks (e, €2, €3, €4, €5, €5, €7, €5, €9, €19) and
(e1, €2, €9, €5, €5, 66, €7, €4, €3, €10) correspond to the same binomial

By = eiesese769 — 3646563610.
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Toric ideals of Graphs

Also note that for certain even closed walks w the binomial B, may
be zero, for example take w to be the even closed walk
(ela 627 697 e87 €5, e5a eSa eQ; 627 el) we have

BW = 169656365 — €2636569€1 = 0.

For the walk ¢ = (e, €2, €10, €1, €2, €19) We have

Bg = €1€e1062 — ese1e19 = 0.
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Toric ideals of Graphs

There are examples that for every even closed walk w the binomial
B, is zero, in these cases

g = (0,
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Toric ideals of Graphs

Theorem (R. Villarreal)

The toric ideal I of a graph G is generated by binomials of the form
By, where w is an even closed walk.
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Hypergraphs

A (multi)hypergraph H consists of a set of vertices

V(H) ={wv1,...,vn} and a set of edges E(H) = {E1,..., E,}, where
an edge E € E(H) is a subset of the vertices. Let Ay be the
vertex-edge incident matrix of the graph G. This is am m x n matrix
with 0/1 entries. The rows are indexed by the vertices and the
columns by the edges. The element in the jj position of the matrix Ay
is 1 if the vertex v; belongs to the edge E;, otherwise is zero.

Any m x n matrix with 0/1 entries and nonzero columns give rise to a
(multi)hypergraph.
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Toric ideals of hypergraphs

Example

The vertex-edge incidence matrix of H.

Ag =
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Toric ideals of hypergraphs

Definition

Let (Epue, Ered) be a multiset collection of edges of H = (V, E). We
denote by deg,,,.(v) and deg,,,(v) the number of edges of Epe and
E.4 containing the vertex v, respectively. We say that (Epje, Ereq) are
balanced on V if degy,,.(v) = deg,.4(V) for each vertex v € V. If
(Ebue, Ereq) are balanced on V then we say that (Epje, Ereq) is @
monomial walk.

Every monomial walk encodes a binomial

fEb/ueaEred = H E_ H E

E€Epue E€Ereq

in IH.

Theorem (Petrovic, Stassi)

The toric ideal Iy of a hypergraph is generated by binomials
corresponding to monomial walks.
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Toric ideals of hypergraphs

fEb/umEred: H E- H E=

E€Epue E€Ereq

E\EEsE,E2E2E2 — EsEoEyoEy E1n EysE2 E2,
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Binomials in a toric ideal

Toric ideals are binomial ideals.
There are certain sets of binomials that are important:

@ Graver basis

@ Circuits

@ Markov bases

@ Indispensable binomials
@ reduced Grobner basis
@ universal Grébner basis
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Graver basis

An irreducible binomial x* — xV in I, is called primitive if there exists
no other binomial x* — x? € I4 such that x* divides x" and x divides

XV

The set of all primitive binomials of a toric ideal / is called the
Graver basis of /,. )
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Graver basis

Let A = [3 4 5] then the binomial x{x3 — x5 belongs to the toric ideal
I4 and is not primitive, since the binomial x?x, — x2 € /4 and

2 3,4
X1 X2| X7 X5,
215
X3|X5.

In this example there are 7 primitive binomials :
Xt — X3, X1X3 — X2, X3 — XoX3, X2Xo — X2, X7 — X3, X1 X3 — X + 33, x5 — x3.
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Conformal sum

Definition

Let u, wy, wy € Kery(A) be such that u = wy + ws. We say that the
above sum is a conformal decomposition of u and write u = wy +. W,
if

ut =w +cwy and v = w +owy .

If both w; and ws, are non-zero, we call such a decomposition proper.

Note that the above condition means that:

@ if the i-coordinate of u is positive then the i-coordinates of wy, ws
are positive or zero

@ if the i-coordinate of u is negative then the i-coordinates of wy, wy
are negative or zero

@ if the i-coordinate of u is zero then both the i-coordinates of
Wy, Wp are zero.
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Graver basis

Definition

The Graver basis of A, consists of the nonzero vectors in Keryz(A) for
which there is no proper conformal decomposition.

The Graver basis of A consists of vectors in Kerz(A) and the Graver
basis of /4 consists of binomials in /4. Note also that if u = wy +. w»
then —u = (—wy) 4+ (—ws). Therefore if u belongs to the Graver
basis of Athen —u belongs to the Graver basis of A.

and only if the vector u is the Graver basis of A.

The Graver basis is a finite set.
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Graver basis

Every element v in Kerz(A) can be written as a conformal sum of
elements in the Graver basis of A.

V=U +clUs+c- - +cUs

Where uy, s, - - - , Us are not necessarily different and belong in the
Graver basis of A and conformal means v = u; + Uy + - - - + Us and
@ if the i-coordinate of v is positive then the i-coordinates of all y;
are positive or zero
@ if the i-coordinate of v is negative then the i-coordinates of u; are
negative or zero

@ if the i-coordinate of v is zero then all the i-coordinates of w; are
Zero.
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Graver basis

Let A = [3 4 5] then the Graver basis of A consists of the following 7
elements:
(4a _37 O)v (17 _2a 1)) (37 _la _1)7 (2a 1; _Q)a (55 07 _3)3 (17 37 _3)7 (07 5a _4)
The element (3,4, —5) belongs to the kernel of A and can be written
as a conformal sum:

(37 47 _5) = (27 1a _2) +C (15 37 _3)
Note also that

(3,4,-5) =(3,—1,—1) + (0,5, —4)

but this sum is not conformal.
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A non-zero vector u € Kerz(A) is called a circuit of A if its support

supp(u) = {ilu; # 0}

is minimal with respect to inclusion and the coordinates of u are
relatively prime.

An irreducible binomial in /4 is called a circuit of I, if its support

supp(u) = {x|u; # 0}

is minimal with respect to inclusion.
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If u= (u1, s, ,up) is a circuit then the vectors {a;|i € supp(u)} are
linearly dependent but any subset of them are linearly independent. l

Let Abe a d x nmatrix of rank d and let u = (uy, Us, -+ - ,up) be a
circuit. Let supp(u) = {i1,--- , ir} then the d x r-matrix [a;,, a,, - - , & ]
has rank r — 1. The vectors a;,, a,,- - - , a,_, are linearly independent
therefore we can find vectors a;,, ., a;_,,--- , aj,,, such that

i, @jy, * , @jp_y» @iy, 8jryyy 5 iy, IS @ basis for the column space
of A. Then the d x (d + 1)-matrix [a; , a;,,- - - , &j,,,] has rank d. The
kernel of this matrix is generated by

d+1 )
Z(_l)/det(aﬁa afza B} al}',u a//+1a e 7afd+1)ef/a
j=1

where g; is the j;-unit vector. Since this is an integer vector and u is a
circuit it must be an integer multiple of u. Therefore

up = 1/9((—1)det(a;, aj,, -~ ,aj_,,aj,,, " ,a,,)€;), where

g =gcd(det(a;,, ai,, -, aj_,,a,,, " »a,.,) 1L <j<r).
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For every element v in Kerz(A) there exist an integer multiple of it
that can be written as a conformal sum of circuits of A.

kv=ci+cCo+c - +cCs

This theorem implies also that for every element v in Kerz(A) there
exist a circuit ¢ such that supp(c™) c supp(u™) and
supp(c™) C supp(u-).

Let A = [3 4 5] then the Circuits of A are the following 3 elements:
(4,-3,0),(5,0,—3),(0,5,—4). The element (3,4, —5) belongs to the
kernel of A and a multiple of it can be written as a conformal sum of
circuits:

5(3,4,—5) = 3(5,0, —3) +¢ 4(0, 5, —4).
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Let I, be a toric ideal and C the ideal generated by the circuits then
Ia = rad(Cp).

Theorem

Let I be a toric ideal and C, the ideal generated by the circuits then
V(la) = V(Ca).
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Definition

A Markov basis of Ais a finite subset M of Kerz(A) such that
whenever w,u € N” and w — u € Kerz(A) (i.e. Aw! = Au'), there exists
asubset {v;:i=1,...,s} of Mthat connects w to u. This means that
(w—>F viyeN'foralll<p<sandw-u=>3; v, AMarkov
basis M of A is minimal if no subset of M is a Markov basis of A.

Note that the dega(x") = Aw! therefore x* and x“ have the same
A-degree. The set of all elements that have the same degree as x" is
called the fiber of x* and is denoted:

deg~*(x").

The elements v; € M are elements in Kery(A) therefore Av,f =0
which means that

X Ev) € deg ! (x).

Therefore a Markov basis is a set of moves that connects any two
elements of the same fiber by moving inside the fiber.

Apostolos Thoma Toric ideals



Let A = [3 4 5] and /4 the corresponding toric ideal. A minimal Markov
basis for I, is ,(1,=2,1),(2,1,—2). The fiber of all the
monomial having A-degree 35 consists of 14 elements:

x10x3, XPx2, X7 xox2, X5 X3 X3,

X{’XS, Xir)xgla XfX%Xg, X?Xéxga X12X26X3a X12X2X§)7 X1X287 XlXSXZ'?a X25X§a X37'
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Theorem (Diaconis-Sturmfels 1998)

M is a minimal Markov basis of A if and only if the set
{x"" — x"" : ue M} is a minimal generating set of I,.

Definition

We call a minimal Markov basis of /4 any minimal generating set of /4.
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In the toric ideal of the complete graph on 10 vertices there are

3210

different minimal Markov bases. Every minimal Markov basis
contains 420 elements.
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Toric ideals
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