Apostolos Thoma

Department of Mathematics University of Ioannina

EMS Summer School on Multigraded Algebra and Applications Moieciu, Romania

Let $A = \{a_1, \dots, a_n\} \subseteq \mathbb{Z}^m$ be a vector configuration in \mathbb{Q}^m and $\mathbb{N}A := \{I_1a_1 + \dots + I_na_n \mid I_i \in \mathbb{N}_0\}$ the corresponding affine semigroup. Let $A = [a_1 \dots a_n] \in \mathbb{Z}^{m \times n}$ be an integer matrix with columns a_i . For a vector $u \in \mathrm{Ker}_\mathbb{Z}(A)$ we let u^+ , u^- be the unique vectors in \mathbb{N}^n with disjoint support such that $u = u^+ - u^-$.

Definition

The toric ideal I_A of A is the ideal in $K[x_1, \cdots, x_n]$ generated by all binomials of the form $x^{\mathrm{u}^+} - x^{\mathrm{u}^-}$ where $\mathrm{u} \in \mathrm{Ker}_{\mathbb{Z}}(A)$.

A toric ideal is a binomial ideal.

Example

Let

$$A = \left(\begin{array}{ccccc} 2 & 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 & 2 \end{array}\right).$$

Then $\begin{pmatrix} -4 \\ -3 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ belongs to the $\mathrm{Ker}_{\mathbb{Z}}(A)$ since

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ -4 \\ -3 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Example

For the vector
$$u=\begin{pmatrix}5\\-4\\-3\\0\\1\\1\end{pmatrix}$$
 we have $u^+=\begin{pmatrix}5\\0\\0\\1\\1\end{pmatrix}$ and $u^-=\begin{pmatrix}0\\4\\3\\0\\0\\0\end{pmatrix}$. Therefore the binomial $x^{\mathrm{u}^+}-x^{\mathrm{u}^-}=x_1^5x_5x_6-x_2^4x_3^3\in I_{\mathsf{A}}$.

Let $A = \{a_1, \dots, a_n\} \subset \mathbb{Z}^m$ be a vector configuration in \mathbb{Q}^m . Let K be any field. We grade the polynomial ring $K[x_1, \dots, x_m]$ by setting $\deg_A(x_i) = a_i$ for $i = 1, \dots, m$. The A-degree of the monomial $x^u := x_1^{u_1} \cdots x_m^{u_m}$ is defined to be

$$\mathsf{deg}_{\textit{A}}(\mathbf{x}^{\mathbf{u}}) := \textit{u}_{1}\mathbf{a}_{1} + \cdots + \textit{u}_{\textit{m}}\mathbf{a}_{\textit{m}} \in \mathbb{N}\textit{A},$$

where $\mathbf{u} = (u_1, \dots, u_m) \in \mathbb{N}^m$.

Definition

The *toric ideal I_A* associated to *A* is the ideal generated by all the binomials $x^u - x^v$ such that $deg_A(x^u) = deg_A(x^v)$.

For such binomials, we define $deg_{A}(x^{u} - x^{v}) := deg_{A}(x^{u})$.

Example

The A-degree of the binomial $x_1x_6 - x_2x_4$ is

$$\deg_{\mathcal{A}}(\mathbf{x}_1\mathbf{x}_6) = \begin{pmatrix} 2\\1\\0 \end{pmatrix} + \begin{pmatrix} 0\\1\\2 \end{pmatrix} = \begin{pmatrix} 1\\2\\0 \end{pmatrix} + \begin{pmatrix} 1\\0\\2 \end{pmatrix} = \deg_{\mathcal{A}}(\mathbf{x}_2\mathbf{x}_4)$$

 I_A is minimally generated by:

$$\{x_1x_6 - x_2x_4, x_1x_6 - x_3x_5, x_4^2x_5 - x_3x_6^2, x_2x_3^2 - x_1^2x_4, x_1x_5^2 - x_2^2x_6, x_1x_4^2 - x_3^2x_6, x_2^2x_3 - x_1^2x_5, x_1x_4x_5 - x_2x_3x_6, x_4x_5^2 - x_2x_6^2\}.$$

The A-degrees of the binomials are accordingly

$$\begin{pmatrix} 2\\2\\2 \end{pmatrix}, \begin{pmatrix} 2\\2\\2 \end{pmatrix}, \begin{pmatrix} 4\\4\\1 \end{pmatrix}, \begin{pmatrix} 1\\4\\4 \end{pmatrix}, \begin{pmatrix} 4\\1\\4 \end{pmatrix}, \begin{pmatrix} 4\\1\\4 \end{pmatrix}, \begin{pmatrix} 4\\1\\4 \end{pmatrix}, \begin{pmatrix} 2\\5\\2 \end{pmatrix}, \begin{pmatrix} 2\\2\\5 \end{pmatrix}, \begin{pmatrix} 5\\2\\2 \end{pmatrix}, \begin{pmatrix} 3\\3\\3 \end{pmatrix}.$$

Toric varieties

Toric ideals are the defining ideals of toric varieties.

$$V(I_A) = \{ P \in K^n | f(P) = 0 \text{ for every } f \in I_A \}$$

It is the Zariski closure of the set of points

$$(t^{a_1},t^{a_2},\cdots,t^{a_n})$$

where $t \in (K - \{0\})^m$ and a_1, \dots, a_n are the columns of the matrix A.

Example

If A is a row matrix, $[m_1, m_2, \cdots, m_n]$, then the toric variety is a monomial curve in K^n : the set of all points in the form $(t^{m_1}, t^{m_2}, \cdots, t^{m_n})$ where $t \in K$.

Toric varieties

Let

$$\mathbf{A} = \left(\begin{array}{ccccc} 2 & 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 & 2 \end{array}\right).$$

Then the toric variety $V(I_A)$ is the Zariski closure of the set of points

$$(t_1^2t_2,t_1t_2^2,t_1^2t_3,t_1t_3^2,t_2^2t_3,t_2t_3^2)$$

where
$$t = (t_1, t_2, t_3) \in (K - \{0\})^3$$
.

Graphs

A simple graph G consists of a set of vertices $V(G) = \{v_1, \ldots, v_m\}$ and a set of edges $E(G) = \{e_1, \ldots, e_n\}$, where an edge $e \in E(G)$ is an unordered pair of vertices, $\{v_i, v_j\}$. Let A_G be the vertex-edge incident matrix of the graph G. This is am $m \times n$ matrix with 0/1 entries. The rows are indexed by the vertices and the columns by the edges. The element in the ij position of the matrix A_G is 1 if the vertex v_i belongs to the edge e_i , otherwise is zero.

Example

The vertex-edge incidence matrix of G.

$$A_{G} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}.$$

With I_G we denote the toric ideal I_{A_G} in $\mathbb{K}[e_1,\ldots,e_n]$, where A_G is the vertex-edge incidence matrix of G.

Let a_e be the column of A_G which corresponds to the edge e. Then the $deg_A(e)=a_e$, which is an m-column that has all the elements zero except two 1.

But one can associate with an edge $e = \{v_s, v_t\} \in E(G)$ the element $v_s + v_t$ in the free abelian group \mathbb{Z}^n with basis the set of vertices of G and may think that $deg_A(e) = v_s + v_t$.

Graphs

Definition

• A walk connecting $v_{i_1} \in V(G)$ and $v_{i_{q+1}} \in V(G)$ is a finite sequence of the form

$$\textbf{\textit{w}} = (\{\textbf{\textit{v}}_{i_1}, \textbf{\textit{v}}_{i_2}\}, \{\textbf{\textit{v}}_{i_2}, \textbf{\textit{v}}_{i_3}\}, \dots, \{\textbf{\textit{v}}_{i_q}, \textbf{\textit{v}}_{i_{q+1}}\})$$

with each $e_{i_i} = \{v_{i_i}, v_{i_{i+1}}\} \in E(G)$.

- Length of the walk w is called the number q of edges of the walk.
- An even walk is a walk of even length.
- An odd walk is a walk of odd length.

Graphs

Definition

A walk $w = (\{v_{i_1}, v_{i_2}\}, \{v_{i_2}, v_{i_3}\}, \dots, \{v_{i_q}, v_{i_{q+1}}\})$ is called closed if $v_{i_{q+1}} = v_{i_1}$.

A cycle is a closed walk

$$(\{v_{i_1}, v_{i_2}\}, \{v_{i_2}, v_{i_3}\}, \dots, \{v_{i_q}, v_{i_1}\})$$

with $v_{i_k} \neq v_{i_j}$, for every $1 \leq k < j \leq q$.

Note that, although the graph G has no multiple edges, the same edge e may appear more than once in a walk. In this case e is called multiple edge of the walk w.

Example

- (e_1, e_2, e_3) is closed odd walk, actually is a cycle.
- (e₁,, e₂, e₃, e₁, e₂, e₃) is a closed even walk. All of the edges are double edges of the walk.
- $(e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_5, e_4)$ is a closed even walk. The edges e_4, e_5 are double edges of the walk.

Given an even closed walk

$$\textbf{\textit{w}} = (\textbf{\textit{e}}_{i_1}, \textbf{\textit{e}}_{i_2}, \dots, \textbf{\textit{e}}_{i_{2q}}) = (\{\textbf{\textit{v}}_{i_1}, \textbf{\textit{v}}_{i_2}\}, \{\textbf{\textit{v}}_{i_2}, \textbf{\textit{v}}_{i_3}\}, \dots, \{\textbf{\textit{v}}_{i_q}, \textbf{\textit{v}}_{i_1}\})$$

of the graph G we denote by

$$E^+(w) = \prod_{k=1}^q e_{i_{2k-1}}, \ E^-(w) = \prod_{k=1}^q e_{i_{2k}}$$

and by B_w the binomial

$$B_{w} = \prod_{k=1}^{q} e_{i_{2k-1}} - \prod_{k=1}^{q} e_{i_{2k}}.$$

Note that

$$\textit{deg}_{\textit{A}}(\textit{E}^{+}(\textit{w})) = \textit{deg}_{\textit{A}}(\prod_{k=1}^{q} \textit{e}_{\textit{i}_{2k-1}}) = (\textit{v}_{\textit{i}_{1}} + \textit{v}_{\textit{i}_{2}}) + (\textit{v}_{\textit{i}_{3}} + \textit{v}_{\textit{i}_{4}}) + \dots + (\textit{v}_{\textit{i}_{q-1}} + \textit{v}_{\textit{i}_{q}}) =$$

$$= (v_{i_2} + v_{i_3}) + (v_{i_4} + v_{i_5}) + \cdots + (v_q + v_{i_1}) = deg_A(\prod_{k=1}^q e_{i_{2k}}) = deg_A(E^-(w))$$

Therefore B_w belongs to the toric ideal I_G .

Example

Let *G* be the following graph with 4 vertices and 4 edges.

Then

$$A_G = \left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{array}\right).$$

For the even closed walk $w=(e_1,e_2,e_3,e_4)$ we have $E^+(w)=e_1e_3$, $E^-(w)=e_2e_4$ and $B_w=e_1e_3-e_2e_4$. In fact the toric ideal associated with A_G is $I_G=< e_1e_3-e_2e_4>$.

Example

For the even closed walk $w=(e_1,e_2,e_3,e_4,e_5,e_6)$ we have that $E^+(w)=e_1e_3e_5$ and $E^-(w)=e_2e_4e_6$ therefore

$$B_{\mathsf{w}}=\mathbf{e}_1\mathbf{e}_3\mathbf{e}_5-\mathbf{e}_2\mathbf{e}_4\mathbf{e}_6.$$

Note that $deg_G(e_1e_3e_5) = deg_G(e_2e_4e_6) = v_1 + v_2 + v_3 + v_4 + v_5 + v_6$.

Example

For the even closed walk $w = (e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_5, e_4)$ we have that $E^+(w) = e_1e_3e_5e_7e_5$ and $E^-(w) = e_2e_4e_6e_8e_4$ therefore

$$B_{w} = e_1 e_3 e_5^2 e_7 - e_2 e_4^2 e_6 e_8.$$

Note that

$$deg_G(e_1e_3e_5^2e_7) = deg_G(e_2e_4^2e_6e_8) = v_1 + v_2 + 2v_3 + 2v_4 + 2v_5 + v_6 + v_7.$$

Example

Note that different walks may correspond to the same binomial. For example both walks $(e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10})$ and $(e_1, e_2, e_9, e_8, e_5, e_6, e_7, e_4, e_3, e_{10})$ correspond to the same binomial

$$B_{w} = e_{1}e_{3}e_{5}e_{7}e_{9} - e_{2}e_{4}e_{6}e_{8}e_{10}.$$

Example

Also note that for certain even closed walks w the binomial B_w may be zero, for example take w to be the even closed walk $(e_1,e_2,e_9,e_8,e_5,e_5,e_5,e_8,e_9,e_2,e_1)$ we have

$$B_{w} = e_{1}e_{9}e_{5}e_{8}e_{2} - e_{2}e_{8}e_{5}e_{9}e_{1} = 0.$$

For the walk $\xi = (e_1, e_2, e_{10}, e_1, e_2, e_{10})$ we have

$$B_{\xi} = e_1 e_{10} e_2 - e_2 e_1 e_{10} = 0.$$

Example

There are examples that for every even closed walk w the binomial B_w is zero, in these cases

$$I_{\mathsf{G}}=0.$$

Theorem (R. Villarreal)

The toric ideal I_G of a graph G is generated by binomials of the form B_w , where w is an even closed walk.

Hypergraphs¹

A (multi)hypergraph H consists of a set of vertices $V(H) = \{v_1, \ldots, v_m\}$ and a set of edges $E(H) = \{E_1, \ldots, E_n\}$, where an edge $E \in E(H)$ is a subset of the vertices. Let A_H be the vertex-edge incident matrix of the graph G. This is am $m \times n$ matrix with 0/1 entries. The rows are indexed by the vertices and the columns by the edges. The element in the ij position of the matrix A_H is 1 if the vertex v_i belongs to the edge E_i , otherwise is zero.

Any $m \times n$ matrix with 0/1 entries and nonzero columns give rise to a (multi)hypergraph.

Example

The vertex-edge incidence matrix of *H*.

$$m{A}_{G} = \left(egin{array}{cccc} 1 & 0 & 0 \ 1 & 0 & 0 \ 0 & 0 & 0 \ 1 & 1 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \ 0 & 1 & 0 \ 0 & 1 & 0 \ \end{array}
ight).$$

Apostolos Thoma

Toric ideals

Definition

Let (E_{blue}, E_{red}) be a multiset collection of edges of H = (V, E). We denote by $\deg_{blue}(v)$ and $\deg_{red}(v)$ the number of edges of E_{blue} and E_{red} containing the vertex v, respectively. We say that (E_{blue}, E_{red}) are balanced on V if $\deg_{blue}(v) = \deg_{red}(v)$ for each vertex $v \in V$. If (E_{blue}, E_{red}) are balanced on V then we say that (E_{blue}, E_{red}) is a monomial walk.

Every monomial walk encodes a binomial

$$f_{E_{blue},E_{red}} = \prod_{E \in E_{blue}} E - \prod_{E \in E_{red}} E$$

in I_H .

Theorem (Petrovic, Stassi)

The toric ideal I_H of a hypergraph is generated by binomials corresponding to monomial walks.

$$\textit{f}_{\textit{E}_{\textit{blue}},\textit{E}_{\textit{red}}} = \prod_{\textit{E} \in \textit{E}_{\textit{blue}}} \textit{E} - \prod_{\textit{E} \in \textit{E}_{\textit{red}}} \textit{E} = \textit{E}_1 \textit{E}_2 \textit{E}_3 - \textit{E}_4 \textit{E}_5 \textit{E}_6$$

$$f_{E_{blue},E_{red}} = \prod_{E \in E_{blue}} E - \prod_{E \in E_{red}} E =$$

$$\mathsf{E}_{1}\mathsf{E}_{2}\mathsf{E}_{3}\mathsf{E}_{4}\mathsf{E}_{5}^{2}\mathsf{E}_{6}^{2}\mathsf{E}_{7}^{2}-\mathsf{E}_{8}\mathsf{E}_{9}\mathsf{E}_{10}\mathsf{E}_{11}\mathsf{E}_{12}\mathsf{E}_{13}\mathsf{E}_{14}^{2}\mathsf{E}_{15}^{2}$$

Binomials in a toric ideal

Toric ideals are binomial ideals.

There are certain sets of binomials that are important:

- Graver basis
- Circuits
- Markov bases
- Indispensable binomials
- reduced Gröbner basis
- universal Gröbner basis

Definition

An irreducible binomial $x^{\mathrm{u}}-x^{\mathrm{v}}$ in I_A is called *primitive* if there exists no other binomial $x^{\mathrm{a}}-x^{\mathrm{b}}\in I_A$ such that x^{a} divides x^{u} and x^{b} divides x^{v} .

Definition

The set of all primitive binomials of a toric ideal I_A is called the Graver basis of I_A .

Let $A = [3\ 4\ 5]$ then the binomial $x_1^3x_2^4 - x_3^5$ belongs to the toric ideal I_A and is not primitive, since the binomial $x_1^2x_2 - x_3^2 \in I_A$ and

$$x_1^2 x_2 | x_1^3 x_2^4,$$

 $x_2^2 | x_3^5.$

In this example there are 7 primitive binomials :

$$\boldsymbol{x}_{1}^{4}-\boldsymbol{x}_{2}^{3}, \boldsymbol{x}_{1}\boldsymbol{x}_{3}-\boldsymbol{x}_{2}^{2}, \boldsymbol{x}_{1}^{3}-\boldsymbol{x}_{2}\boldsymbol{x}_{3}, \boldsymbol{x}_{1}^{2}\boldsymbol{x}_{2}-\boldsymbol{x}_{3}^{2}, \boldsymbol{x}_{1}^{5}-\boldsymbol{x}_{3}^{3}, \boldsymbol{x}_{1}\boldsymbol{x}_{2}^{3}-\boldsymbol{x}+3^{3}, \boldsymbol{x}_{2}^{5}-\boldsymbol{x}_{3}^{4}.$$

Conformal sum

Definition

Let $u, w_1, w_2 \in \text{Ker}_{\mathbb{Z}}(A)$ be such that $u = w_1 + w_2$. We say that the above sum is a conformal decomposition of u and write $u = w_1 +_c w_2$ if

$$u^+ = w_1^+ +_c w_2^+$$
 and $u^- = w_1^- +_c w_2^-$.

If both w_1 and w_2 are non-zero, we call such a decomposition proper.

Note that the above condition means that:

- if the i-coordinate of u is positive then the i-coordinates of w₁, w₂ are positive or zero
- if the i-coordinate of u is negative then the i-coordinates of w₁, w₂ are negative or zero
- if the i-coordinate of u is zero then both the i-coordinates of w₁, w₂ are zero.

Definition

The Graver basis of A, consists of the nonzero vectors in $\mathrm{Ker}_{\mathbb{Z}}(A)$ for which there is no proper conformal decomposition.

The Graver basis of A consists of vectors in $\mathrm{Ker}_{\mathbb{Z}}(A)$ and the Graver basis of I_A consists of binomials in I_A . Note also that if $u=w_1+_c w_2$ then $-u=(-w_1)+_c (-w_2)$. Therefore if u belongs to the Graver basis of A then -u belongs to the Graver basis of A.

The binomial $x^{u^+} - x^{u^-}$ is in the Graver basis of the toric ideal I_A if and only if the vector u is the Graver basis of A.

Theorem

The Graver basis is a finite set.

Every element v in $Ker_{\mathbb{Z}}(A)$ can be written as a conformal sum of elements in the Graver basis of A.

$$V = U_1 +_c U_2 +_c \cdots +_c U_s$$

Where u_1, u_2, \dots, u_s are not necessarily different and belong in the Graver basis of A and conformal means $v = u_1 + u_2 + \dots + u_s$ and

- if the i-coordinate of v is positive then the i-coordinates of all u_j are positive or zero
- ullet if the i-coordinate of v is negative then the i-coordinates of u_j are negative or zero
- if the i-coordinate of v is zero then all the i-coordinates of w_j are zero.

Let $A = [3\ 4\ 5]$ then the Graver basis of A consists of the following 7 elements:

$$(4, -3, 0), (1, -2, 1), (3, -1, -1), (2, 1, -2), (5, 0, -3), (1, 3, -3), (0, 5, -4).$$

The element (3,4,-5) belongs to the kernel of \emph{A} and can be written as a conformal sum:

$$(3,4,-5) = (2,1,-2) +_{c} (1,3,-3).$$

Note also that

$$(3,4,-5) = (3,-1,-1) + (0,5,-4)$$

but this sum is not conformal.

Definition

A non-zero vector $u \in \text{Ker}_{\mathbb{Z}}(A)$ is called a circuit of A if its support

$$\mathsf{supp}(u) = \{i | u_i \neq 0\}$$

is minimal with respect to inclusion and the coordinates of u are relatively prime.

Definition

An irreducible binomial in I_A is called a circuit of I_A if its support

$$\mathsf{supp}(u) = \{x_i | u_i \neq 0\}$$

is minimal with respect to inclusion.

If $u=(u_1,u_2,\cdots,u_n)$ is a circuit then the vectors $\{a_i|i\in \text{supp}(u)\}$ are linearly dependent but any subset of them are linearly independent.

Let A be a $d \times n$ matrix of rank d and let $u = (u_1, u_2, \cdots, u_n)$ be a circuit. Let $\mathrm{supp}(u) = \{i_1, \cdots, i_r\}$ then the $d \times r$ -matrix $[a_{i_1}, a_{i_2}, \cdots, a_{i_r}]$ has rank r-1. The vectors $a_{i_1}, a_{i_2}, \cdots, a_{i_{r-1}}$ are linearly independent therefore we can find vectors $a_{i_{r+1}}, a_{i_{r+2}}, \cdots, a_{i_{d+1}}$ such that $a_{i_1}, a_{i_2}, \cdots, a_{i_{r-1}}, a_{i_{r+1}}, a_{i_{r+2}}, \cdots, a_{i_{d+1}}$ is a basis for the column space of A. Then the $d \times (d+1)$ -matrix $[a_{i_1}, a_{i_2}, \cdots, a_{i_{d+1}}]$ has rank d. The kernel of this matrix is generated by

$$\sum_{j=1}^{d+1} (-1)^j \det(a_{i_1}, a_{i_2}, \cdots, a_{i_{j-1}}, a_{i_{j+1}}, \cdots, a_{i_{d+1}}) e_{i_j},$$

where e_{i_j} is the i_j -unit vector. Since this is an integer vector and u is a circuit it must be an integer multiple of u. Therefore $u_{i_i} = 1/g((-1)^j \det(a_{i_1}, a_{i_2}, \cdots, a_{i_{i-1}}, a_{i_{i+1}}, \cdots, a_{i_{d+1}})e_{i_i})$, where

$$d_{i_j} = 1/g((-1)^j \det(a_{i_1}, a_{i_2}, \cdots, a_{i_{j-1}}, a_{i_{j+1}}, \cdots, a_{i_{d+1}})e_{i_j}), \text{ wher} \ g = gcd(\det(a_{i_1}, a_{i_2}, \cdots, a_{i_{j-1}}, a_{i_{j+1}}, \cdots, a_{i_{d+1}}))|1 \le j \le r).$$

Apostolos Thoma

Toric ideals

Theorem

For every element v in $Ker_{\mathbb{Z}}(A)$ there exist an integer multiple of it that can be written as a conformal sum of circuits of A.

$$k\mathbf{v} = \mathbf{c}_1 +_{\mathbf{c}} \mathbf{c}_2 +_{\mathbf{c}} \cdots +_{\mathbf{c}} \mathbf{c}_{\mathbf{s}}$$

This theorem implies also that for every element v in $\mathrm{Ker}_{\mathbb{Z}}(A)$ there exist a circuit c such that $supp(c^+) \subset supp(u^+)$ and $supp(c^-) \subset supp(u^-)$.

Example

Let $A = [3\ 4\ 5]$ then the Circuits of A are the following 3 elements: (4,-3,0),(5,0,-3),(0,5,-4). The element (3,4,-5) belongs to the kernel of A and a multiple of it can be written as a conformal sum of circuits:

$$5(3,4,-5) = 3(5,0,-3) +_{c} 4(0,5,-4).$$

Theorem

Let I_A be a toric ideal and C_A the ideal generated by the circuits then $I_A = rad(C_A)$.

Theorem

Let I_A be a toric ideal and C_A the ideal generated by the circuits then $V(I_A) = V(C_A)$.

Markov basis

Definition

A Markov basis of A is a finite subset M of $\mathrm{Ker}_{\mathbb{Z}}(A)$ such that whenever $\mathrm{w},\mathrm{u}\in\mathbb{N}^n$ and $\mathrm{w}-\mathrm{u}\in\mathrm{Ker}_{\mathbb{Z}}(A)$ (i.e. $A\mathrm{w}^t=A\mathrm{u}^t$), there exists a subset $\{\mathrm{v}_i:i=1,\ldots,s\}$ of M that connects w to u . This means that $(\mathrm{w}-\sum_{i=1}^p\mathrm{v}_i)\in\mathbb{N}^n$ for all $1\leq p\leq s$ and $\mathrm{w}-\mathrm{u}=\sum_{i=1}^s\mathrm{v}_i$. A Markov basis M of A is minimal if no subset of M is a Markov basis of A.

Note that the $deg_A(x^w) = Aw^t$ therefore x^w and x^u have the same A-degree. The set of all elements that have the same degree as x^w is called the fiber of x^w and is denoted:

$$deg^{-1}(x^w)$$
.

The elements $v_i \in M$ are elements in $\mathrm{Ker}_{\mathbb{Z}}(A)$ therefore $Av_i^t = 0$ which means that

$$\mathbf{x}^{(\mathrm{w}-\sum_{i=1}^{p}\mathrm{v}_{i})}\in deg^{-1}(\mathbf{x}^{\mathbf{w}}).$$

Therefore a Markov basis is a set of moves that connects any two elements of the same fiber by moving inside the fiber.

Markov basis

Let $A = [3 \ 4 \ 5]$ and I_A the corresponding toric ideal. A minimal Markov basis for I_A is (-3,1,1),(1,-2,1),(2,1,-2). The fiber of all the monomial having A-degree 35 consists of 14 elements:

$$\begin{array}{l} x_1^{10} x_3, x_1^9 x_2^2, x_1^7 x_2 x_3^2, x_1^6 x_2^3 x_3, \\ x_1^5 x_2^5, x_1^5 x_3^4, x_1^4 x_2^2 x_3^3, x_1^3 x_2^4 x_3^2, x_1^2 x_2^6 x_3, x_1^2 x_2 x_3^5, x_1 x_2^8, x_1 x_2^3 x_3^5, x_2^5 x_3^3, x_3^7. \end{array}$$

Markov basis

Theorem (Diaconis-Sturmfels 1998)

M is a minimal Markov basis of A if and only if the set $\{x^{u^+} - x^{u^-} : u \in M\}$ is a minimal generating set of I_A .

Definition

We call a minimal Markov basis of I_A any minimal generating set of I_A .

Markov bases

In the toric ideal of the complete graph on 10 vertices there are $\label{eq:complete} 3^{210}$

different minimal Markov bases. Every minimal Markov basis contains 420 elements.

Apostolos Thoma

Department of Mathematics University of Ioannina

EMS Summer School on Multigraded Algebra and Applications Moieciu, Romania