Toric ideals and Toric ideals of graphs

Apostolos Thoma

Department of Mathematics University of Ioannina

EMS Summer School on Multigraded Algebra and Applications Moieciu, Romania

Binomials in a toric ideal

- Graver basis
- Circuits
- minimal Markov bases
- indispensables
- reduced Gröbner bases
- universal Gröbner basis

The complete graph on 10 vertices.

- Every Markov basis contains 420 elements.
- There are 3²¹⁰ different minimal Markov bases.
- There are 4,866,750 circuits.
- There are 13, 825, 350 binomials in the Universal Gröbner basis
- There are 14, 127, 750 binomials in the Graver basis.

- Every Markov basis contains 420 elements.
- There are 3²¹⁰ different minimal Markov bases.
- There are 4,866,750 circuits.
- There are 13, 825, 350 binomials in the Universal Gröbner basis
- There are 14, 127, 750 binomials in the Graver basis.

- Every Markov basis contains 420 elements.
- There are 3²¹⁰ different minimal Markov bases.
- There are 4,866,750 circuits.
- There are 13,825,350 binomials in the Universal Gröbner basis.
- There are 14, 127, 750 binomials in the Graver basis.

- Every Markov basis contains 420 elements.
- There are 3²¹⁰ different minimal Markov bases.
- There are 4,866,750 circuits.
- There are 13,825,350 binomials in the Universal Gröbner basis.
- There are 14, 127, 750 binomials in the Graver basis.

- Every Markov basis contains 420 elements.
- There are 3²¹⁰ different minimal Markov bases.
- There are 4,866,750 circuits.
- There are 13, 825, 350 binomials in the Universal Gröbner basis.
- There are 14, 127, 750 binomials in the Graver basis.

Universal Gröbner bases

Theorem (B. Sturmfels)

For any toric ideal I_A we have that the Universal Gröbner basis is a subset of the Graver basis.

Universal Gröbner bases

Theorem (B. Sturmfels)

For any toric ideal I_A we have that the set of circuits is a subset of the Universal Gröbner basis .

Circuits and reduced Gröbner basis of toric ideals

Definition

An irreducible binomial $x^{u^+} - x^{u^-}$ in I_A is called a circuit of I_A if its support

$$supp(x^{u^{+}} - x^{u^{-}}) = \{x_{i} | u_{i} \neq 0\}$$

is minimal with respect to inclusion.

Theorem

Let < be a monomial order on $k[x_1,\ldots,x_n]$ and I_A a toric ideal. Then $\{x^{u_1}^+-x^{u_1}^-,x^{u_2}^+-x^{u_2}^-,\cdots,x^{u_s}^+-x^{u_s}^-\}$ with $x^{u_1}^+>x^{u_1}^-,x^{u_2}^+>x^{u_2}^-,\cdots,x^{u_s}^+>x^{u_s}^-$ is the reduced Gröbner basis with respect to the monomial order < if and only if $x^{u_1}^+,x^{u_2}^+,\cdots,x^{u_s}^+$ are the minimal monomial generators of $in_<(I_A)$ and $x^{u_1}^-,x^{u_2}^-,\cdots,x^{u_s}^-$ are standard monomials.

Proof.

Let $x^{u^+}-x^{u^-}$ be a circuit. We will prove that there exists an appropriate monomial order < such that $x^{u^+}-x^{u^-}$ belongs to the reduced Gröbner basis with respect to the monomial order <. Take any elimination order with the variables not belonging to the support of $x^{u^+}-x^{u^-}$ greater than the variables belonging to the support of $x^{u^+}-x^{u^-}$.

We claim that $x^{u^+} - x^{u^-}$ belongs to the reduced Gröbner basis with respect to this monomial order <.

Suppose not. Then either the initial monomial of $x^{u^+}-x^{u^-}$ is not a minimal generator of $In_<(I_A)$ or the other monomial is not standard. In both cases there exists $x^{v^+}-x^{v^-}$ in the reduced Gröbner basis of the toric ideal I_A , with $x^{v^+}>x^{v^-}$ such that x^{v^+} divides a monomial of $x^{u^+}-x^{u^-}$. W.l.o.g. we can assume that $x^{v^+}|x^{u^+}$. Then $\operatorname{supp}(x^{v^+})\subset\operatorname{supp}(x^{u^+})\subset\operatorname{supp}(x^{u^+}-x^{u^-})$. From the choice of the monomial order we see that also $\operatorname{supp}(x^{v^-})\subset\operatorname{supp}(x^{u^+}-x^{u^-})$. But $x^{u^+}-x^{u^-}$ is a circuit and both $x^{u^+}-x^{u^-}$ and $x^{v^+}-x^{v^-}$ are irreducible, therefore

 $x^{u^+} - x^{u^-} = x^{v^+} - x^{v^-}$, a contradiction.

Universal Gröbner bases

Theorem

For any toric ideal I_A we have $Circuits_A \subset UGB_A \subset Graver_A$.

What about the minimal Markov bases and the indispensables? (generic, $I_{K_{10}}$)

Definition

Let $A \in \mathbb{Z}^{m \times n}$ be a matrix of rank d. Then A is called unimodular if all non-zero $d \times d$ -minors of A have the same absolute value. The toric ideal I_A is called unimodular if the matrix A is unimodular.

Example

Example

Theorem

For a unimodular toric ideal the set of circuits is the Graver basis of I_A .

$$Circuits(I_A) = Graver(I_A)$$

Theorem

For a unimodular toric ideal the set of circuits is the Graver basis of I_A .

Proof.

From the definition of unimodularity and the formula

$$\sum_{j=1}^{d+1} (-1)^j \det(\mathbf{a}_{i_1}, \mathbf{a}_{i_2}, \cdots, \mathbf{a}_{i_{j-1}}, \mathbf{a}_{i_{j+1}}, \cdots, \mathbf{a}_{i_{d+1}}) \mathbf{e}_{i_j},$$

every circuit has coordinates 1,-1 or 0. Let $x^{u^+}-x^{u^-}$ be an element in the Graver basis of I_A . Then there exist a circuit $x^{c^+}-x^{c^-}$ such that $supp(c^+) \subset supp(u^+)$ and $supp(c^-) \subset supp(u^-)$. The monomials x^{c^+}, x^{c^-} are squarefree therefore $x^{c^+}|x^{u^+}$ and $x^{c^-}|x^{u^-}$. But $x^{u^+}-x^{u^-}$ is in the Graver basis and thus

$$X^{u^+} - X^{u^-} = X^{c^+} - X^{c^-}.$$

Theorem

For a unimodular toric ideal I_A we have $Circuits_A = UGB_A = Graver_A$.

Example

A minimal Markov basis may differ from the above sets in a unimodular toric ideal.

For $A \in \mathbb{M}^{m \times n}(\mathbb{Z})$ the second *Lawrence lifting* of A is denoted by $A^{(2)}$ and is the $(2m + n) \times 2n$ matrix

$$A^{(2)} = \left(\begin{array}{cc} A & 0 \\ 0 & A \\ I_n & I_n \end{array} \right) .$$

Note that $\operatorname{Ker}_{\mathbb{Z}}(A^{(2)}) = \{(u, -u) | u \in \operatorname{Ker}_{\mathbb{Z}}(A)\}.$ Therefore

$$I_{A^{(2)}} = < x^{u^+} y^{u^-} - x^{u^-} y^{u^+} | u \in \mathrm{Ker}_{\mathbb{Z}}(A) > \subset k[x_1, \dots, x_n, y_1, y_2, \dots, y_n].$$

Theorem

The binomial $x^{u^+} - x^{u^-}$ is in the Graver basis of I_A if and only if $x^{u^+}y^{u^-} - x^{u^-}y^{u^+}$ is in the Graver basis of $I_{A^{(2)}}$.

If
$$u = v +_c w$$
 then $(u, -u) = (v, -v) +_c (w, -w)$.

Theorem (Sturmfels)

For the toric ideal of the second Lawrence lifting the following sets of binomials coincide

- the Graver basis of $I_{A^{(2)}}$
- 2 the Universal Gröbner basis of $I_{A(2)}$
- **3** any reduced Gröbner basis of $I_{A(2)}$
- **any minimal Markov basis of** $I_{A^{(2)}}$ **.**
- \bullet the set of indispensables of $I_{A^{(2)}}$.

Proof.

Let M be a minimal Markov basis. We claim that M is the Graver basis. Suppose not, then there exists an element $x^{u^+}y^{u^-} - x^{u^-}y^{u^+}$ in the Graver basis of $I_{A^{(2)}}$ which can be written in the form

$$x^{u^+}y^{u^-} - x^{u^-}y^{u^+} =$$

$$f_1(x^{u_1^+}y^{u_1^-} - x^{u_1^-}y^{u_1^+}) + f_2(x^{u_2^+}y^{u_2^-} - x^{u_2^-}y^{u_2^+}) + \dots + f_s(x^{u_s^+}y^{u_s^-} - x^{u_s^-}y^{u_s^+}),$$

for some polynomials f_1, \cdots, f_s and some elements

 $x^{u_1^+}y^{u_1^-} - x^{u_1^-}y^{u_1^+}, x^{u_2^+}y^{u_2^-} - x^{u_2^-}y^{u_2^+}, \cdots, x^{u_s^+}y^{u_s^-} - x^{u_s^-}y^{u_s^+}$ of the Graver basis of $I_{A^{(2)}}$ different from $x^{u^+}y^{u^-} - x^{u^-}y^{u^+}$. This means that there exists an i such that $x^{u_i^+}y^{u_i^-}$ or $x^{u_i^-}y^{u_i^+}$ divides $x^{u^+}y^{u^-}$.

In the first case $x^{u_i^+}$ divides x^{u^+} and $y^{u_i^-}$ divides y^{u^-} , which implies that $x^{u_i^+}$ divides x^{u^+} and $x^{u_i^-}$ divides x^{u^-} . Thus $x^{u^+} - x^{u^-}$ does not belong to the Graver basis of I_A , and consequently $x^{u^+}y^{u^-} - x^{u^-}y^{u^+}$ is not in the Graver basis of $I_{A^{(2)}}$, a contradiction.

Similarly for the second case.

Theorem (Sturmfels)

For the toric ideal of the second Lawrence lifting the following sets of binomials coincide

- the Graver basis of $I_{A^{(2)}}$
- 2 the Universal Gröbner basis of $I_{A(2)}$
- **3** any reduced Gröbner basis of $I_{A(2)}$
- **any minimal Markov basis of** $I_{A^{(2)}}$ **.**
- \bullet the set of indispensables of $I_{A^{(2)}}$.

This theorem gives a technique for computing the Graver basis of I_A .

Algorithm

Let < be any monomial order on $k[x_1, \ldots, x_n, y_1, y_2, \ldots, y_n]$.

- Compute the reduced Gröbner basis G of $I_{A^{(2)}}$.
- Substitute the y variables in the binomials of G by 1.
- The new binomials are in $k[x_1, ..., x_n]$ and they are all the elements of the Graver basis of I_A .

Theorem

The Graver basis of $I_{A^{(2)}}$ is the reduced Gröbner basis of $I_{A^{(2)}}$ with respect to any monomial order.

Theorem

The binomial $x^{u^+} - x^{u^-}$ is in the Graver basis of I_A if and only if $x^{u^+}y^{u^-} - x^{u^-}y^{u^+}$ is in the Graver basis of $I_{A^{(2)}}$.

This theorem gives a technique for computing the Graver basis of I_A .

Algorithm

Let < be any monomial order on $k[x_1, \ldots, x_n, y_1, y_2, \ldots, y_n]$.

- Compute the reduced Gröbner basis G of $I_{A^{(2)}}$.
- Substitute the y variables in the binomials of G by 1.
- The new binomials are in $k[x_1, ..., x_n]$ and they are all the elements of the Graver basis of I_A .

Theorem

The Graver basis of $I_{A^{(2)}}$ is the reduced Gröbner basis of $I_{A^{(2)}}$ with respect to any monomial order.

Theorem

The binomial $x^{u^+} - x^{u^-}$ is in the Graver basis of I_A if and only if $x^{u^+}y^{u^-} - x^{u^-}y^{u^+}$ is in the Graver basis of $I_{A^{(2)}}$.

Theorem

The Graver basis of any toric ideal I_A is finite.

Toric ideals and Toric ideals of graphs

Apostolos Thoma

Department of Mathematics University of Ioannina

EMS Summer School on Multigraded Algebra and Applications Moieciu, Romania

This is a joint work with Enrique Reyes and Christos Tatakis

Graphs

Let G be the graph with vertices $V(G) = \{v_1, \ldots, v_m\}$ and edges $E(G) = \{e_1, \ldots, e_n\}$, where an edge $e \in E(G)$ is an unordered pair of vertices, $\{v_i, v_j\}$. Let A_G be the vertex-edge incident matrix of the graph G. The toric ideal I_G of the graph G is the toric ideal I_{A_G} in $\mathbb{K}[e_1, \ldots, e_m]$, the polynomial ring in the m variables e_1, \ldots, e_m over a field \mathbb{K} .

Walks and subwalks

Definition

• A walk connecting $v_{i_1} \in V(G)$ and $v_{i_{q+1}} \in V(G)$ is a finite sequence of the form

$$\mathbf{W} = (\{\mathbf{V}_{i_1}, \mathbf{V}_{i_2}\}, \{\mathbf{V}_{i_2}, \mathbf{V}_{i_3}\}, \dots, \{\mathbf{V}_{i_q}, \mathbf{V}_{i_{q+1}}\})$$

with each $e_{i_i} = \{v_{i_i}, v_{i_{i+1}}\} \in E(G)$.

- We call a walk $w' = (e_{j_1}, \dots, e_{j_t})$ a subwalk of w if $e_{j_1} \cdots e_{j_t} | e_{j_1} \cdots e_{j_t}$.
- A walk $w = (\{v_{i_1}, v_{i_2}\}, \{v_{i_2}, v_{i_3}\}, \dots, \{v_{i_q}, v_{i_{q+1}}\})$ is called closed if $v_{i_{q+1}} = v_{i_1}$.
- A cycle is a closed walk

$$(\{\textit{v}_{\textit{i}_1}, \textit{v}_{\textit{i}_2}\}, \{\textit{v}_{\textit{i}_2}, \textit{v}_{\textit{i}_3}\}, \ldots, \{\textit{v}_{\textit{i}_q}, \textit{v}_{\textit{i}_1}\})$$

with $v_{i_k} \neq v_{i_j}$ for every $1 \leq k < j \leq q$.

Given an even closed walk

$$\textit{w} = (\textit{e}_{\textit{i}_1}, \textit{e}_{\textit{i}_2}, \ldots, \textit{e}_{\textit{i}_{2q}})$$

of the graph G we denote by

$$E^+(w) = \prod_{k=1}^q e_{i_{2k-1}}, \ E^-(w) = \prod_{k=1}^q e_{i_{2k}}$$

and by B_w the binomial

$$B_{w} = \prod_{k=1}^{q} e_{i_{2k-1}} - \prod_{k=1}^{q} e_{i_{2k}}$$

belonging to the toric ideal I_G .

Theorem (R. Villarreal)

The toric ideal I_G of a graph G is generated by binomials of the form B_w , where w is an even closed walk.

An even closed path in the complete graph with 10 vertices.

Definition

An irreducible binomial $x^{\mathrm{u}}-x^{\mathrm{v}}$ in I_A is called *primitive* if there exists no other binomial $x^{\mathrm{a}}-x^{\mathrm{b}}\in I_A$ such that x^{a} divides x^{u} and x^{b} divides x^{v} .

Definition

The set of all primitive binomials of a toric ideal I_A is called the Graver basis of I_A .

Definition

An even closed walk $w=(e_{i_1},e_{i_2},\ldots,e_{i_{2q}})$ is said to be primitive if $B_w\neq 0$ and there exists no even closed subwalk ξ of w of smaller length such that $E^+(\xi)|E^+(w)$ and $E^-(\xi)|E^-(w)$.

Theorem

The walk w is primitive if and only if the binomial B_w is primitive.

Example

The walk $w=(e_1,e_2,e_3,e_4,e_5,e_6,e_7,e_8)$ of the graph G is not primitive, since there exists a closed even subwalk of w, for example $\xi=(e_1,e_2,e_7,e_8)$ such that

$$e_1e_7|e_1e_3e_5e_7$$
 and $e_2e_8|e_2e_4e_6e_8$.

Note that $B_w = e_1 e_3 e_5 e_7 - e_2 e_4 e_6 e_8$ and $B_{\xi} = e_1 e_7 - e_2 e_8$.

Example

The walk $w=(e_1,e_2,e_3,e_4,e_5,e_6,e_7,e_8,e_9,e_{10})$ in the graph G is primitive, although there exists an even closed subwalk $\xi=(e_3,e_4,e_8,e_9)$, but

- neither e₃e₈ divides e₁e₃e₅e₇e₉
- nor e₄e₉ divides e₁e₃e₅e₇e₉.

Note that $B_w = e_1 e_3 e_5 e_7 e_9 - e_2 e_4 e_6 e_8 e_{10}$ and $B_{\xi} = e_3 e_8 - e_4 e_9$.

Example

The walk $w=(e_1,e_2,e_3,e_4,e_5,e_6,e_7,e_8,e_9,e_{10},e_{11},e_{12})$ is not primitive, since for the walk $\xi=(e_1,e_2,e_3,e_{10},e_{11},e_{12})$ we have that ξ is an even closed subwalk of w,

$$e_1e_3e_{11}|e_1e_3e_5e_7e_9e_{11}$$

and

$$e_2e_{10}e_{12}|e_2e_4e_6e_8e_{10}e_{12}.$$

Note that $B_w = e_1 e_3 e_5 e_7 e_9 e_{11} - e_2 e_4 e_6 e_8 e_{10} e_{12}$ and $B_{\xi} = e_1 e_3 e_{11} - e_2 e_{10} e_{12}$.

What are the primitive even closed walks? A necessary characterization of the primitive elements was given by H. Ohsugi and T. Hibi:

Theorem

Let G be a finite connected graph. If $B \in I_G$ is primitive, then we have $B = B_w$ where w is one of the following even closed walks:

- w is an even cycle of G
- ② $w = (c_1, c_2)$, where c_1 and c_2 are odd cycles of G having exactly one common vertex
- **3** $w = (c_1, w_1, c_2, w_2)$, where c_1 and c_2 are odd cycles of G having no common vertex and where w_1 and w_2 are walks of G both of which combine a vertex v_1 of c_1 and a vertex v_2 of c_2 .

It is easy to see that any binomial in the first two cases is always primitive but this is not true in the third case.

Non primitve walk

In a toric ideal of a graph what are elements of the Graver basis? What are the primitive even closed walks?

Theorem

Let G a graph and w an even closed walk of G. The walk w is primitive if and only if

- every block of w is a cycle or a cut edge,
- every cut vertex of w belongs to exactly two blocks and it is a sink of both.

In a toric ideal of a graph what are elements of the Graver basis? What are the primitive even closed walks?

Theorem

Let G a graph and w an even closed walk of G. The walk w is primitive if and only if

- every block of w is a cycle or a cut edge,
- ullet every multiple edge of the walk w is a double edge of the walk and a cut edge of w,
- every cut vertex of w belongs to exactly two blocks and it is a sink of both.

Definition

A cut vertex is a vertex of the graph whose removal increases the number of connected components of the remaining subgraph.

Definition

A cut edge is an edge of the graph whose removal increases the number of connected components of the remaining subgraph.

Definition

A graph is called biconnected if it is connected and does not contain a cut vertex.

A block is a maximal biconnected subgraph of a given graph G.

Definition

Every even primitive walk $w = (e_{i_1}, \dots, e_{i_{2k}})$ partitions the set of edges in the two sets $w^+ = \{e_{i_j} | j \text{ odd}\}, w^- = \{e_{i_j} | j \text{ even}\}$ (otherwise the binomial B_w is not irreducible).

The edges of w^+ are called odd edges of the walk and those of w^- even edges.

Definition

Every even primitive walk $w = (e_{i_1}, \dots, e_{i_{2k}})$ partitions the set of edges in the two sets $w^+ = \{e_{i_j} | j \text{ odd}\}, w^- = \{e_{i_j} | j \text{ even}\}$ (otherwise the binomial B_w is not irreducible).

The edges of w^+ are called odd edges of the walk and those of w^- even edges.

Definition

Every even primitive walk $w = (e_{i_1}, \dots, e_{i_{2k}})$ partitions the set of edges in the two sets $w^+ = \{e_{i_j} | j \text{ odd}\}, w^- = \{e_{i_j} | j \text{ even}\}$ (otherwise the binomial B_w is not irreducible).

The edges of w^+ are called odd edges of the walk and those of w^- even edges.

Definition

Every even primitive walk $w = (e_{i_1}, \dots, e_{i_{2k}})$ partitions the set of edges in the two sets $w^+ = \{e_{i_j} | j \text{ odd}\}, w^- = \{e_{i_j} | j \text{ even}\}$ (otherwise the binomial B_w is not irreducible).

The edges of w^+ are called odd edges of the walk and those of w^- even edges.

Definition

Sink of a block B is a common vertex of two odd or two even edges of the walk w which belong to the block B.

In particular if e is a cut edge of a primitive walk then e appears at least twice in the walk and belongs either to w^+ or w^- . Therefore both vertices of e are sinks.

Sink is a property of the walk w and not of the underlying graph w.

For example the walk $(e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8)$ has no sink, while in the walk $(e_1, e_2, e_7, e_8, e_1, e_2, e_7, e_8)$ all four vertices are sinks.

The walk $(e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10})$ has two cut vertices which are both sinks of all of their blocks.

Theorem

Let G a graph and w an even closed walk of G. The walk w is primitive if and only if

- every block of w is a cycle or a cut edge,
- ullet every multiple edge of the walk w is a double edge of the walk and a cut edge of w,
- ullet every cut vertex of w belongs to exactly two blocks and it is a sink of both.

Toric ideals and Toric ideals of graphs

Apostolos Thoma

Department of Mathematics University of Ioannina

EMS Summer School on Multigraded Algebra and Applications Moieciu, Romania