MODELAREA ALGEBRICA A UNOR OBIECTE COMBINATORIALE
SI APLICATII COMPUTATIONALE
PROGRAM PN II-RESURSE UMANE, COD TE_46, contract nr. 83/02.08.2010
Descriere succinta a proiectului de cercetare
Un subiect de mare interes in cercetarea matematica actuala il constituie doua conjecturi formulate de Richard Stanley. Prima din ele se refera la asa-numitele descompuneri Stanley ale modulelor multigraduate finit generate peste inele de polinoame in n variabile (cu graduarea standard). A doua conjectura se refera la complexele simpliciale partitionabile. Prima conjectura a fost lansata de Stanley in 1982 intr-un articol faimos Linear Diophantine equations and local cohomology aparut in Inventiones Mathematicae. Timp de 23 de ani ea a fost validata doar in cateva cazuri izolate. Aceasta conjectura afirma ca orice modul multigraduat finit generat peste inelul de polinoame in mai multe variabile standard graduat admite o descompunere Stanley al carei Stanley depth (sdepth) este marginit inferior de depth-ul modulului. Recent a fost demonstrat ca prima conjectura mentionata implica de fapt a doua conjectura.In ceea ce urmeaza ne vom referi doar la prima conjectura formulata de Stanley. Conjectura este larg deschisa. Ea a fost verificata pentru inele de polinoame cu cel mult 5 variabile si in alte cateva cazuri. Legatura dintre depth (un invariant omologic) si sdepth (un invariant combinatorial) este oarecum neclara. In lipsa unei strategii globale, metodele folosite au depins foarte mult de particularitatile cazurilor tratate. In acest context, lucrarea How to compute the Stanley depth of a monomial ideal , Journal of Algebra (Volume 322 (9), 2009, pp. 3151-3169) scrisa de Herzog, Vladoiu si Zheng propune o strategie generala pentru abordarea acestei problemei. Mai mult, este prezentat si un algoritm de calcul efectiv pentru sdepth in cazul unui modul de forma J/I, unde J, I sunt ideale monomiale arbitrare intr-un inel de polinoame. Aceasta noua abordare a permis verificarea conjecturii pentru noi cazuri, in afara clasei modulelor pretty clean. Merita mentionat ca in clasa modulelor pretty clean de forma J/I cu J si I ideale monomiale intr-un inel polinomial are loc egalitatea depth J/I = sdepth J/I. Noua strategie a permis si studierea cazului general, in care depth si sdepth sunt diferite. De asemenea, cazurile anterior cunoscute au putut fi redemonstrate intr-o maniera mai simpla si mai eleganta devenind astfel mai usor accesibile celor interesati. Impactul articolului in comunitatea matematica a fost rapid si destul de mare. El a fost deja citat in 35 de lucrari stiintifice din domeniul algebrei comutative, combinatoricii si al algebrei computationale.
Ca o consecinta naturala a interesului starnit in comunitatea stiintifica de lucrarea mai sus mentionata, unul din obiectivele principale ale acestui proiect este rafinarea teoretica a algoritmului de calcul al sdepth-ului unui ideal monomial. Totodata vizam si generalizarea lui avand drept tinta cazul general al modulele multigraduate finit generate peste un inel de polinoame in n variabile standard graduat. Dorim de asemenea sa furnizam o implementare eficienta a algoritmului intr-un sistem specializat de algebra computationala cum ar fi Singular, CoCoA ori Macaulay2 si sa folosim noul software pentru a verifica conjectura Stanley pentru un numar mai mare de variabile. Nu in ultimul rand, ne dorim sa obtinem noi cazuri favorabile in care aceasta conjectura este adevarata.
SusDirector de proiect
Lect. Dr. Vladoiu Grigore-Marius, Facultatea de Matematica si Informatica a Universitatii din Bucuresti (FMI-UB) .Echipa de cercetare a grantului
Rapoarte
2010 Etapa unica: 10.12.2010Rezultate obtinute
Prezentari conferinte/Diseminarea rezultatelor
Data | Titlul prezentarii - autor |
---|---|
14.09.2010 | Normaliz 2.5. - Bogdan Ichim, ICMS 2010 International Congress on Mathematical Software, Kobe, Japonia |
20.09.2010 | Polyhedra and their Faces - Marius Vladoiu, SNA- Combinatorics in Commutative Algebra, IMAR |
21.09.2010 | Finite Generation of Cones - Marius Vladoiu, SNA- Combinatorics in Commutative Algebra, IMAR |
22.09.2010 | Affine Monoids and their Hilbert Bases- Marius Vladoiu, SNA- Combinatorics in Commutative Algebra, IMAR |
23.09.2010 | Affine Monoid Rings - Bogdan Ichim, SNA- Combinatorics in Commutative Algebra, IMAR |
24.09.2010 | Normal Affine Monoid Rings - Bogdan Ichim, SNA- Combinatorics in Commutative Algebra, IMAR |
24.09.2010 | Introduction to Normaliz - Bogdan Ichim, SNA- Combinatorics in Commutative Algebra, IMAR |
13.02.2011 | Stanley depth and size of a monomial ideal - Marius Vladoiu, 5thWorld Conference on 21st Century Mathematics 2011, Lahore, Pakistan |
13.05.2011 | Koszul numerical semigroups - Dumitru Stamate, WYRM, Constanta |
22.06.2011 | Introduction to Normaliz 2.7 - Bogdan Ichim, MMMA 2011(Matrix Methods in Mathematics and Applications), Moscova, Rusia |
29.06.2011 | Introduction to Normaliz 2.7 - Bogdan Ichim, 7th Congress of Romanian Mathematicians, Brasov |
11.07.2011 | Stanley depth and size of a monomial ideal - Marius Vladoiu, MONomial Ideals, Computations and Applications,CIEM Castro Urdiales (Cantabria, Spania) |
19.09.2011 | Affine monoids and Hilbert bases I - Marius Vladoiu, SNA- Computer Algebra and Combinatorics, IMAR |
20.09.2011 | Affine monoids and Hilbert bases II - Marius Vladoiu, SNA- Computer Algebra and Combinatorics, IMAR |
20.09.2011 | Hilbert functions and Ehrhart functions I - Bogdan Ichim, SNA- Computer Algebra and Combinatorics, IMAR |
21.09.2011 | Hilbert functions and Ehrhart functions II - Bogdan Ichim, SNA- Computer Algebra and Combinatorics, IMAR |
22.09.2011 | Computing convex hulls and triangulations - Marius Vladoiu SNA- Computer Algebra and Combinatorics, IMAR |
20.10.2011 | The Koszul property for affine semigroups - Dumitru Stamate, International School ISCCAAG, Messina, Italia |
9.05.2012 | Introduction to Normaliz - Bogdan Ichim, Universitatea Rostock, Germania |
11.05.2012 | The stable set of associated prime ideals of a polymatroidal ideal - Marius Vladoiu, WYRM 2012, Universitatea Ovidius, Constanta |
11.05.2012 | Semigroups with few generators and shellings - Dumitru Stamate, WYRM 2012, Universitatea Ovidius, Constanta |
11.05.2012 | A Schreier Domain Type Condition - Mihai Epure, WYRM 2012, Universitatea Ovidius, Constanta |
4.09.2012 | Shellings for semigroups - Dumitru Stamate, SNA-Discrete Invariants in Commutative Algebra, Mangalia |
4.09.2012 | A new class of pseudo-Dedekind domains and its star operations extensions - Mihai Epure, SNA-Discrete Invariants in Commutative Algebra, Mangalia |
4.09.2012 | Resolutions and Singular-Tutorial - Dumitru Stamate, SNA-Discrete Invariants in Commutative Algebra, Mangalia |
7.09.2012 | Rational polytopes in combinatorial voting theory - Bogdan Ichim, SNA-Discrete Invariants in Commutative Algebra, Mangalia |
20.11.2012 | How to compute the multigraded Hilbert depth of a module - Bogdan Ichim, Universitatea Osnabrueck, Germania |
21.12.2012 | A Schreier domain type condition and its star operation extensions - Mihai Epure, Commutative rings, integer-valued polynomials and polynomial functions, Graz, Austria |
15.1.2013 | A Schreier-type condition domain in the star operation setting (III) - Mihai Epure, Comm. Algebra Seminar, IMAR & FMI, Bucharest |
26.02.2013 | The Nagata ring of a t-sharp domain - Mihai Epure, Comm. Algebra Seminar, IMAR & FMI, Bucharest |
12.03.2013 | The Complete Intersection property for shifted semigroups - Dumitru Stamate, Comm. Algebra Seminar, IMAR & FMI, Bucharest |
02.04.2013 | The Complete Intersection property for shifted semigroups (II)- Dumitru Stamate, Comm. Algebra Seminar, IMAR & FMI, Bucharest |
28.05.2013 | A Schreier domain type condition in the systems of ideals context - Mihai Epure, Comm. Algebra Seminar, IMAR & FMI, Bucharest |
27.06.2013 | Behaviour of depth function for monomial ideals - Marius Vladoiu, EACA's Second International School On Computer Algebra and Applications, Valladolid, Spain |
05.09.2013 | A Schreier domain type condition, its star operation extensions and a more general setting (ideal systems for monoids) - Mihai Epure, SNA-Algebraic Methods in Combinatorics, IMAR, Bucharest |