Romanian

 

Quasi Quantum Groups and Monoidal Categories

Contract number 47/2022, Project CNCSIS PN-III-P4_PCE-2021-0282

Research team

1.         Daniel Bulacu (project leader)

2.        Sorin Dăscălescu (experienced researcher)

3.        Maria Joița (experienced researcher)

4.        Constantin Năstăsescu (experienced researcher)

5.         Florin Panaite (experienced researcher)

6.         Dragoș Ștefan (experienced researcher)

7.         Anca Niță (trainee researcher; project member until September 30, 2023)

8.        Moș Maria Magdalena (trainee researcher; project member from November 2023)

Scientific objectives 

There are three work-packages:

1.        New classes of Frobenius-Lusztig kernels quasi quantum groups (qQGs for short)

2.        Quasi-quantum groups of Nichols type and quasi-quantum shuffle groups

3.        Modular categories defined by quasi-quantum groups and related structures.

The objectives corresponding to them are:  ​​

Ø  Construction of Uq(g) and Frobenius-Lusztig kernels in the quasi-Hopf case.

Ø  Generalization for L-R-crossed products containing deformations with a 2-cocycle of a double biproduct as a particular case.

Ø  Determination of braided tensorial Hopf algebras corresponding to certain qQG (quantum quasi-group) structures, as well as certain factor algebras of these.

Ø  Characterization of mixed qQGs in categories of Hopf bimodules as quasi-Hopf algebras of biproduct type, providing examples from abelian groups, universal Clifford algebras, and (quasi-) universal quantum groups.

Ø  Find necessary and sufficient conditions for Yetter-Drinfeld modules over a qQG H to form a balanced and ribbon category, respectively.

Ø  Find the ribbon elements for a quasi-quantum double group D(H) and interpretation of the obtained results in terms of H.

Ø  Study of possible connections between finite (co)wreaths with associated monoidal/sovereign/braided/spherical/modular (co)representation categories and certain properties of the Eilenberg-Moore algebra defining the (co)wreath.

 

Budget

NR. CRT.

BUDGET ITEM

2022

2023

2024

TOTAL

1

PERSONEL EXPENSES

143.530

322.900

322.885

789.315

2

INDIRECT EXPENSES

25.674

63.492

61.485

150.651

3

TRAVEL EXPENSES

24.618

95.382

80.000

200.000

4

LOGISTIC EXPENSES

33.010

20.000

7.015

60.025

5

TOTAL

226.832

501.774

471.385

1.199.991

 

Research funded by this project

1.        C. Boboc, S. Dăscălescu, L. van Wyk, Cyclic algebras, symbol algebras and gradings on matrices, Linear Algebra and its Applications 688 (2024), 157-178.

2.        D. Bulacu, B. Torrecillas, 1-cycle deformations for Yetter-Drinfeld coalgebras, submitted.

3.        D. Bulacu, D. Popescu, B. Torrecillas, Double wreath quasi-Hopf algebras, J. Algebra 622 (2025), 1-71.

4.        D. Bulacu, D. Popescu, B. Torrecillas, Double biproduct quasi-quantum groups, submitted.

5.        D. Bulacu, B. Torrecillas, The quasi-Hopf analog of the Drinfeld-Jimbo quantum groups, in preparation to be submitted.

6.        D. Bulacu, M. Misuratti, Biproduct quasi-quantum groups of rank 2, submitted.

7.        D. Bulacu, M. Misuratti, Quasi-Hopf algebras of dimension 6, submitted; arXiv preprint arXiv:2410.03476.

8.        D. Bulacu, C. Menini, M. Misuratti, Quasi-quantum groups obtained from Nichols algebras of diagonal type, work in progress.

9.        S. Dăscălescu, C. Năstăsescu, L. Năstăsescu: Graded (quasi-) Frobenius rings, J. Algebra 620 (2023), 392-424.

10.           S. Dăscălescu, C. Năstăsescu, L. Năstăsescu, Picard groups of quasi-Frobenius algebras and a question on Frobenius strongly graded algebras, accepted for publication in Publicacions Matemàtiques. 

11.           F. Panaite, Two-sided crossed products, submitted; arXiv preprint arXiv:2410.14908.

12.         F. Panaite, L-R crossed products, submitted; arXiv preprint arXiv:2410.08429.

13.         M. Joiţa, Finsler locally C*-modules, Bull. Malays. Math. Sci. Soc. 46 (2023), 86.

14.         M. Joiţa, The Shilov boundary for a local operator system, submitted; arXiv preprint arXiv:2409.10474.

15.         M. Joita, I. Şimon, Injective envelopes for locally C*-algebras, submitted.

16.         L. Liu, A. Makhlouf, C. Menini, F. Panaite, BiHom-NS-algebras, twisted Rota-Baxter operators and generalized Nijenhuis operators, Results in Mathematics 78 (2023), article number: 251.

17.         A. Makhlouf, D. Ștefan, Deformations of algebraic structures in monoidal categories, submitted.

18.         C. Ospel, F. Panaite, P. Vanhaecke, Generalized NS-algebras, J. Pure Appl. Algebra 229 (2025), 107784.

 

Scientific seminar

Tema

Data

Ora

Reconstruction theorems

3.11.2022

12-14

Reconstruction theorems

10.11.2022

12-14

C* algebras

17.11.2022

12-14

C* algebras

24.11.2022

12-14

C* algebras

8.12.2022

12-14

C* algebras

15.12.2022

12-14

Frobenius and separable algebras – classic version

26.01.2023

12-14

Frobenius and separable algebras – categorial version

9.02.2023

12-14

Augmented Frobenius algebras

16.03.2023

12-14

Frobenius  wreath algebras

30.03.2023

12-14

Separable wreath algebras

13.04.2023

12-14

Morita theory for wreath algebras

27.04.2023

12-14

Nichols algebras

4.05.2023

12-14

Nichols algebras

18.05.2023

12-14

Nichols algebras

8.06.2023

12-14

Bimonadas and Hopf monads

19.10.2023

12-14

Structure theorems for bimonads

2.11.2023

12-14

Bimonads defined by wreath  algebras

16.11.2023

12-14

Quasi-quantum groups characterized by Hopf  bimonads

7.12.2023

12-14

Cohomology of finite abelian groups

26.01.2024

12-14

Spectral sequences and their role in computing group cohomology classes

7.02.2024

12-14

Projective representations

21.02.2024

12-14

Group theoretical categories

14.03.2024

12-14

Spherical and fusion categories

28.03.2024

12-14

Balanced and ribbon categories

11.04.2024

12-14

Deformation theories for algebras

7.05.2024

12-14

Cross product algebras and biproducts

14.05.2024

12-14

Duoidal categories and bimonoids

6.06.2024

12-14

Shuffle quantum groups

19.06.2024

12-14

Frobenius-Lusztig kernels

9.10.2024

12-14

Free Hopf algebras in non-strict monoidal categories

24.10.2024

12-14

The Picard group of a braided monoidal category

12.11.2024

12-14

 

Scientific and financial reports

2022

Scientific report

Post-calculation assessment

2023

Scientific report

Post-calculation assessment

 

 2024

Scientific report

Post-calculation assessment